

Simons≣Voss

SmartRelais 3-systeem

Manual

25.03.2025

Inhoudsopgave

1.	Beoogd gebruik					
2.	Algemene veiligheidsinstructies					
З.	Productspecifieke veiligheidsaanwijzingen					
4.	Bete	kenis van de tekstformattering	10			
5.	Systeembeschrijving					
	5.1	Controller	11			
	5.2	2 Lezer				
	5.3	5.3 SmartOutput-module				
	5.4	5.4 Versies				
	5.5	Toebehoren	15			
6.	Syst	eemvereisten				
7.	Aansluitingen					
	7.1	7.1 Controller				
	7.2	7.2 Lezer				
	7.3 SmartOutput-module		22			
8.	Configureren					
	8.1	Uitpakken en systeemtest				
	8.2	Configuratie				
		8.2.1 IP-instellingen bepalen				
	00	0.2.2 Communicatieknooppunt aanmaken	Uכ			
	0.0	8.3.1 SmartOutput-module aanmaken				
		8.3.2 Controller resetten				
	8.4	Applicatievoorbeelden				
		8.4.1 Basisprincipe				
		8.4.2 Gateway-tunctie				
		8.4.4 Oplossingen voor scenario's				
		8.4.5 Bedrading	62			
		8.4.6 Blokschakelbeelden				
9.	Mon	103				
	9.1	Controller	103			
	9.2	Lezer				
		9.2.1 Montagepositie van de externe lezer vastleggen9.2.2 Behuizing openen	107 108			

SmartRelais 3-systeem (Manual)

	9.3	SmartC	Dutput-module	112		
10.	SREL	SREL3 ADV in de LSM				
	10.1	Oversta	ap van SREL2 naar SREL3.ADV	113		
	10.2	Toegan 10.2.1 10.2.2 10.2.3	gslijst Passagelijst uitlezen Passagelijst resetten Protocollering onbevoegde pogingen tot toegang	113 113 117 118		
	10.3 FlipFlop			118		
	10.4	Tijdbudgets				
		10.4.1 10.4.2	Ontwerp van een tijdbudget voor nieuwe identificatiemedia in het sluits teem Activerings-/vervaldatum negeren	ys- 120 121		
	10.5	Gevolge	en bij uitval van het netwerk	121		
	10.6	Signale	ringsinstellingen	121		
	10.7	Gebruik 10.7.1	als interface Specificatie van de seriële interfaces met CLS	122 123		
	10.8	NFC-op	otie	140		
	10.9	Schake	lduur	141		
	10.10) Software-Reset				
	10.11	Tijdoms 10.11.1 10.11.2	stelling Uitgebreide configuratie zonder SmartOutput-module Uitgebreide configuratie met SmartOutput-modules	142 144 145		
	10.12	Opening op afstand				
	10.13	3 Firmware-update				
	10.14	Gebeur 10.14.1 10.14.2	tenissen Controller-inputs analyseren SmartSurveil	151 151 153		
	10.15	Tips 10.15.1 10.15.2 10.15.3	Eerste programmering via TCP/IP Verschillende rechten op transponders Signalering voor FlipFlop	155 155 156 158		
11.	Signa	alering		161		
12.	Onde	rhoud		162		
	12.1	Batterij- 12.1.1 12.1.2	-alarm Batterijstatus uitlezen met USB-kabel Batterijstatus uitlezen via het netwerk	162 162 163		
	12.2	Batterij	vervanging	165		
13.	Oplos	ssen van	fouten	168		

	13.1	Componenten resetten	168
	13.2	Fout bij de overdracht	168
	13.3	Continu schakelen van het relais in de SmartOutput-module	170
	13.4	Problemen met input of het uitlezen/programmeren van het netwerk	171
	13.5	Tijdomstelling reageert niet op wijziging	171
14.	Techr	nische gegevens	173
	14.1	Bestelnummers	173
	14.2	Eigenschappen	174
		14.2.1 Controller	174
		14.2.2 Lezer	178
		14.2.3 LED-lezer	180
		14.2.4 SmartOutput-module	182
		14.2.5 Informatie over de bedrading	184
	14.3	Afmetingen	186
		14.3.1 Controller	186
		14.3.2 Lezer	187
		14.3.3 LED-lezer	188
		14.3.4 SmartOutput-module	189
	14.4	Boorsjablonen	190
		14.4.1 Controller	190
		14.4.2 Lezer	191
		14.4.3 Boorsjabloon SREL3-LED/LR-lezer	192
15.	Hulp	en verdere informatie	193

1. Beoogd gebruik

Het SimonsVoss SmartRelais-systeem (SREL 3 ADV) is de derde generatie van een systeem met diverse componenten in een netwerk, die de intelligente regeling van sluitelementen en externe systemen mogelijk maken. Het systeem bestaat uit een controller, minstens één externe lezer en een optionele SmartOutput-module.

De controller is de centrale component. Een dienst communiceert met de LSM-database en houdt de controller bij gebruik als Gateway up-to-date met de database – compleet zonder handmatig ingrijpen of tijdrovende nieuwe programmeringen.

Met de informatie die uit de LSM-database wordt opgeroepen en de via de lezer doorgegeven identificatiegegevens kan de controller ter identificatie gegevens vergelijken met de database. Afhankelijk van de geprogrammeerde instellingen van de controller zijn verschillende handelingen mogelijk, waaronder:

- 🗜 rechten toewijzen
- 🚦 rechten intrekken
- 🚦 tijdbudgets opladen
- Configuratie van de identificatiemedia bijwerken
- 👪 relaisuitgangen schakelen
- 🚦 overzichten lezen

Het uitlezen van de identificatiemedia gebeurt door maximaal drie externe lezers, die zich in verschillende ruimten, gescheiden van de controller kunnen bevinden. De lezer kan bij het SmartRelais-systeem uit de derde generatie actieve en passieve identificatiemedia uitlezen en de opgeroepen informatie ter beoordeling doorgeven aan de controller.

De controller heeft een ingebouwde relaisuitgang die vrij programmeerbaar is. Het systeem kan met de SmartOutput-modules in Daisy-Chainschakeling met maximaal 116 relaisuitgangen worden uitgebreid, die eveneens vrij programmeerbaar zijn.

2. Algemene veiligheidsinstructies

Signaalwoord: Mogelijke onmiddellijke gevolgen van niet-naleving

GEVAAR: Dood of ernstig letsel (waarschijnlijk) WAARSCHUWING: Dood of ernstig letsel (mogelijk, maar onwaarschijnlijk) VOORZICHTIG: Lichte letsel LET OP: Materiële schade of storing OPMERKING: Laag of nee

WAARSCHUWING

Geblokkeerde toegang

Door foutief geïnstalleerde en/of geprogrammeerde componenten kan de doorgang door een deur geblokkeerd blijven. Voor gevolgen van een geblokkeerde toegang tot gewonden of personen in gevaar, materiële of andere schade, is SimonsVoss Technologies GmbH niet aansprakelijk.

Geblokkeerde toegang als gevolg van manipulatie van het product

Als u het product zelf wijzigt, kunnen er storingen optreden en kan de toegang worden geblokkeerd door een deur.

 Vervang het product alleen wanneer dat nodig is en op de manier die in de documentatie wordt beschreven.

Batterijen niet inslikken. Verbrandingsgevaar door gevaarlijke stoffen

Dit product bevat lithium-knoopcellen. Als de knoopcel wordt ingeslikt, kunnen ernstige inwendige brandwonden optreden die binnen slechts twee uur de dood veroorzaken.

- 1. Houd nieuwe en gebruikte batterijen buiten bereik van kinderen.
- 2. Als het batterijvak niet goed sluit, mag u het product niet meer gebruiken en moet u het uit de buurt van kinderen houden.
- 3. Als u denkt dat batterijen zijn ingeslikt of in een ander lichaamsdeel terecht zijn gekomen, moet u onmiddellijk medische hulp inroepen.

Explosiegevaar door verkeerd type batterij

Het plaatsen van het verkeerde type batterij kan een explosie veroorzaken.

Gebruik alleen de in de technische gegevens vermelde batterijen.

VOORZICHTIG

Brandgevaar door batterijen

De gebruikte batterijen kunnen bij verkeerde behandeling tot brand- of verbrandingsgevaar leiden.

- 1. Probeer niet de batterijen op te laden, open te maken, te verwarmen of te verbranden.
- 2. U mag de batterijen evenmin kortsluiten.

LET OP

Schade door elektrostatische ontlading (ESD) wanneer de behuizing open is

Dit product heeft elektronische componenten die kunnen worden beschadigd door een elektrostatische ontlading.

- 1. Maak gebruik van ESD-conforme materialen (bijv. aardingsarmband).
- 2. Zorg dat u geaard bent voor werkzaamheden waarbij u met de elektronica in contact kunt komen. Gebruik hiervoor geaarde metalen oppervlakken (bijv. Deurposten, waterleidingen of verwarmingsbuizen).

Beschadiging door vloeistoffen

Dit product heeft elektronische en/of mechanische componenten die kunnen worden beschadigd door elk type vloeistof.

Houd vloeistoffen uit de buurt van de elektronica.

Beschadiging door bijtende reinigingsmiddelen

Het oppervlak van dit product kan worden beschadigd door ongeschikte reinigingsmiddelen.

Maak uitsluitend gebruik van reinigingsmiddelen die geschikt zijn voor kunststof oppervlakken.

Beschadiging door mechanische impact

Dit product heeft elektronische componenten die kunnen worden beschadigd door elk type mechanische impact.

- 1. Vermijd dat u de elektronica aanraakt.
- 2. Vermijd ook andere mechanische impact op de elektronica.

Beschadiging door te hoge stroomsterkte of overspanning

Dit product heeft elektronische componenten die kunnen worden beschadigd door te sterke stroom of te hoge spanning.

Zorg dat de maximaal toegestane spanning en/of stroom niet wordt overschreden.

Beschadiging door verwisseling van de polariteit

Dit product bevat elektronische componenten die door verwisseling van de polariteit van de voedingsbron beschadigd kunnen worden.

Verwissel de polariteit van de voedingsbron niet (batterijen of netadapters).

Storing van de communicatie door metalen oppervlakken

Dit product communiceert draadloos. Metalen oppervlakken kunnen het zendbereik van het product aanzienlijk verminderen.

Monteer of plaats het product niet op of in de buurt van metalen oppervlakken.

OPMERKING

Beoogd gebruik

SimonsVoss-producten zijn uitsluitend bedoeld voor het openen en sluiten van deuren en vergelijkbare voorwerpen.

Gebruik SimonsVoss-producten niet voor andere doeleinden.

Storingen door slecht contact of verschillende ontladingen

Contactoppervlakken die te klein/vervuild zijn of verschillende ontladen accu's kunnen leiden tot storingen.

- 1. Gebruik alleen batterijen die zijn vrijgegeven door SimonsVoss.
- 2. Raak de contacten van de nieuwe batterijen niet met de handen aan.
- 3. Gebruik schone, vetvrije handschoenen.
- 4. Vervang daarom alle batterijen tegelijk.

Afwijkende tijden bij G2-sluitelementen

De interne tijdeenheid van de G2-sluitelementen heeft een technische tolerantie tot ± 15 minuten per jaar.

Programmeer tijdkritische sluitelementen geregeld opnieuw.

Kwalificaties vereist

De installatie en inbedrijfstelling vereist gespecialiseerde kennis. Alleen getraind personeel mag het product installeren en in bedrijf stellen.

Varkeerde montage

Voor beschadiging van deuren of componenten als gevolg van verkeerde montage aanvaardt SimonsVoss Technologies GmbH geen aansprakelijkheid.

Aanpassingen of nieuwe technische ontwikkelingen kunnen niet uitgesloten worden en worden gerealiseerd zonder aankondiging.

De Duitse taalversie is de originele handleiding. Andere talen (opstellen in de contracttaal) zijn vertalingen van de originele instructies.

Lees en volg alle installatie-, installatie- en inbedrijfstellingsinstructies. Geef deze instructies en eventuele onderhoudsinstructies door aan de gebruiker.

3. Productspecifieke veiligheidsaanwijzingen

GEVAAR

Letselgevaar door foutieve programmering

Het SREL3-ADV-systeem is niet geschikt voor de vervanging van bestaande veiligheidsvoorzieningen.

- 1. Controleer goed dat het SREL3-ADV-systeem alleen als extra beveiliging tot inzet komt.
- 2. Vervang bestaande veiligheidsvoorzieningen niet door het SREL3-ADVsysteem.

VOORZICHTIG

Verbrandingsgevaar door hete printplaat

Bij gebruik van POE (spanningsverzorging via Ethernet) kan de temperatuur van de printplaat bijzonder hoog zijn!

Laat de controller afkoelen voordat u de behuizing openmaakt.

LET OP

Onbevoegde toegang

Het relais in de controller kan door onbevoegden worden kortgesloten.

 Monteer de controller met het relais in een omgeving die beveiligd is tegen onbevoegde toegang.

Onbevoegd schakelen van het relais door middel van een magneet

Het relais kan onbedoeld schakelen door sterke magneten in de buurt.

- 1. Monteer de controller met het relais in een omgeving die niet toegankelijk is voor onbevoegden met magneten.
- 2. Of u bedient het relais permanent onder spanning (omgekeerde uitgang en gebruikt NC+COM in plaats van NO+COM).

4. Betekenis van de tekstformattering

Deze documentatie maakt gebruik van tekstformattering en ontwerpelementen voor een beter begrip. In de tabel wordt de betekenis van mogelijke tekstformattering uitgelegd:

Bijvoorbeeld	Button	
Bijvoorbeeld	Checkbox	
Bijvoorbeeld	Optie	
[Bijvoorbeeld]	Registerkaart	
"Bijvoorbeeld"	Naam van een weergegeven venster	
Bijvoorbeeld	Bovenste programmabalk	
Bijvoorbeeld	Invoer in de opengeklapte bovenste programmabalk	
Bijvoorbeeld	Context menu-item	
▼ Bijvoorbeeld	Naam van een dropdownmenu	
"Bijvoorbeeld"	Selectieoptie in een dropdownmenu	
"Bijvoorbeeld"	Bereik	
Bijvoorbeeld	Veld	
Bijvoorbeeld	Naam van een (Windows)-dienst	
Bijvoorbeeld	Commando's (bijv. Windows CMD- commando's)	
Bijvoorbeeld	Database invoer	
[Bijvoorbeeld]	Selectie van het type MobileKey	

5. Systeembeschrijving

5.1 Controller

De controller van het SREL3-ADV-systeem wordt via Ethernet aangesloten op het netwerk. De Ethernet-aansluiting is PoE-compatibel. Een externe voedingseenheid is dus niet absoluut nodig.

Gebruik als Gateway in het virtuele netwerk is mogelijk. Hiervoor maakt de controller verbinding met de VNHost-server. De VNHost-server geeft gewijzigde rechten (programmeerbehoefte) en gegevens van de LSMdatabase door aan de controller. Hierdoor hoeft de database niet meer volledig en tijdrovend geladen te worden, maar haalt de controller bij het herkennen van een identificatiemedium de beschikbaar gestelde gegevens op (pull-principe). Het gehele systeem wordt geprogrammeerd via één enkele interface, de controller.

De SREL3-ADV is bovendien in een ZK-variant beschikbaar, die de functies van het systeem uitbreidt met tijdzonesturing en protocollering (passagelijsten).

Drie aangebrachte schroefklem-ingangen maken een flexibel gebruik van de controller mogelijk:

- doorvoer naar de LSM (ingangen 1 en 2)
- push-to-open-contact (ingang 3)

Met de ingebouwde schroefklem-relaisuitgang kan een willekeurig systeem worden aangestuurd, bijvoorbeeld om een elektrische deur te openen.

Bij de eerste programmering van de controller via USB moet een IP-adres worden toegekend. Daarna is er geen USB-verbinding meer nodig, maar kan de configuratie van de controller via het netwerk gewijzigd worden.

De ingebouwde back-up batterij zorgt ervoor dat ook na een stroomstoring de geprogrammeerde instellingen bewaard blijven en de controller na het herstellen van de stroomverzorging onbelemmerd kan blijven functioneren.

OPMERKING

Volgorde van inschakelen in acht nemen

De controller zoekt na een PowerOn-Reset (uitval en herstel van de stroomverzorging) bij het opstarten automatisch eenmalig naar aangesloten systeemcomponenten. Systeemcomponenten die pas na het opstarten van de controller van stroom worden voorzien, kunnen hierdoor niet reageren op de aanvraag van de controller en worden dus niet herkend.

Derhalve moet de controller tegelijkertijd met de andere systeemcomponenten, of als laatste systeemcomponent, van stroom worden voorzien.

5.2 Lezer

Voor het gebruik van het SREL3-ADV-systeem is minstens één externe lezer nodig. SmartRelais-3-lezers kunnen afzonderlijk van de controller besteld worden.

De controller kan geen identificatiemedia uitlezen. In plaats hiervan kunnen maximaal drie lezers via RS-485 worden aangesloten op de controller. Ze kunnen zowel actieve alsook passieve identificatiemedia uitlezen. Na het uitlezen geven de lezer de gegevens door aan de controller die de bevoegdheid van het identificatiemedium controleert en afhankelijk van de programmering de bijbehorende actie kan aansturen. De lezer zelf kan geen acties initiëren en kan hierdoor ook in minder beveiligde zones worden aangebracht. In de WP-variant is de behuizing afgedicht en beschermd tegen spatwater.

De lezers kunnen naar keuze door de controller van stroom worden voorzien, of over een eigen voedingseenheid beschikken.

OPMERKING

Te lage bedrijfsspanning

Let er bij de keuze van de voedingseenheid op dat er een spanningsverlies optreedt op de onder spanning staande leidingen. Door het spanningsverlies kan de bedrijfsspanning bij de lezer te laag zijn, waardoor storingen ontstaan. In dit geval moet de bedrijfsspanning bij de controller verhoogd worden, of de lezer voorzien worden van een eigen voedingseenheid.

Een meerkleurige led signaleert de betreffende bedrijfsstatus.

5.3 SmartOutput-module

Een SmartOutput-module is de ideale aanvulling op de controllers zodra er meer dan één relaisuitgang nodig is. Iedere SmartOutput-module is voorzien van acht relais met elk één wisselcontact. SmartOutput-modules kunnen in parallelle schakeling met elkaar worden verbonden en gemonteerd worden op een DIN-rail (35 mm * 7,5 mm).

Er kunnen maximaal 15 modules worden aangesloten. Er zijn slechts vier uitgangen beschikbaar op module 15 (in totaal maximaal 116 extra uitgangen).

Een meerkleurige led signaleert de betreffende bedrijfsstatus.

OPMERKING

Volgorde van inschakelen in acht nemen

De controller zoekt na een PowerOn-Reset (uitval en herstel van de stroomverzorging) bij het opstarten automatisch eenmalig naar aangesloten systeemcomponenten. Systeemcomponenten die pas na het opstarten van de controller van stroom worden voorzien, kunnen hierdoor niet reageren op de aanvraag van de controller en worden dus niet herkend.

Derhalve moet de controller tegelijkertijd met de andere systeemcomponenten, of als laatste systeemcomponent, van stroom worden voorzien.

5.4 Versies

Met de introductie van de SREL 3 ADV zijn ten opzichte van de voorganger enkele punten verbeterd.

	SmartRelais 2	SmartRelais 3 Advan- ced
Tijdsduur van de gege- vensoverdracht naar de Gateway	 Afhankelijk van de hoeveelheid data (push-principe) 	 Onmiddellijk (pull- principe)
	Wiegand 33 bit	Wiegand 33 bit
	👪 Wiegand 26 bit	Wiegand 26 bit
	E Primion	# Primion
Interfaces	Siemens Cerpass	Siemens Cerpass
	👪 Kaba Benzing	👪 Kaba Benzing
	Gantner Legic	Gantner Legic
	Isgus	Isgus
	Controller	
Benodigde componen-	E Lezer	Controller
tie	LockNode	I Lezer
	Router	
Netwerkintegratie	LockNode	 Ethernet (geïntegreerd)
		# 9-32 VDC
Stroomverzorging	■ 9-24 VDC	₽oE
Aantal relaiscontacten	 1	 Maximaal 116+1 (met SmartOutput- modules)
Aantal externe lezers	# Max. 2	# Max. 3
		# Ethernet
Programmering	SmartCD	USB (met Power- Adapter)

Vergelijking tussen SmartRelais 2 en SmartRelais 3

5.5 Toebehoren

Met optioneel verkrijgbaar toebehoren kunt u het SREL3-ADV-systeem aanpassen aan verschillende toepassingen. U kunt de volgende accessoires bestellen:

Bestelnummer	Naam	Doeleinde
MOD.SOM8	SmartOutput-module	De SmartOutput-mo- dule breidt het aantal aan te sturen relaisuit- gangen uit tot 116+1.
POWER.SUPPLY.2	Voedingseenheid (12 V _{DC} , 500 mA)	Deze voedingseenheid is geschikt voor de voe- ding van de controller.
SREL2.COVER1	Beschermende behui- zing tegen vandalisme	Deze behuizing met speciale schroeven is ook geschikt voor het SREL3-ADV-systeem. Hij beschermt de lezer van het SREL3-ADV- systeem tegen weersin- vloeden en vandalisme.

6. Systeemvereisten

Voor de programmering van het SmartRelais 3 is de LSM 3.3 SP2 of nieuwer nodig (Basic Online, Business of Professional).

De VNHost moet geïnstalleerd en actief zijn, zodat de controller via de VNHost in Gateway-toepassing gegevens en programmeerbehoefte kan oproepen uit de database.

Voor het gebruik heeft de controller een TCP/IP-verbinding met de server nodig:

- **10/100MB/s**
- Reactietijd < 10 ms typ.

Aansluiting op snellere netwerken is mogelijk, zolang deze compatibel zijn met oudere versies.

Voor het gebruik van de CommNode- of VNHost-server moet het .NET-Framework vanaf versie 4.0 geïnstalleerd zijn.

Wanneer de LSM Basic Online met een virtueel netwerk wordt toegepast, dan moet de LSM Basic Online als administrator worden uitgevoerd.

7. Aansluitingen

OPMERKING

Storing door elektromagnetische velden

Signalen door de verbindingskabel tussen de lezer en de controller worden van buitenaf beïnvloed door elektromagnetische velden. Een afgeschermde kabel vermindert de invloed van externe stoorsignalen.

Gebruik een afgeschermde kabel.

Massalus door afscherming

Apparaten die op afstand zijn geplaatst, kunnen een iets ander aardingspotentiaal hebben. Een aan beide zijden aangesloten afscherming vormt een tweede massaverbinding, waardoor dit potentiaalverschil wordt gecompenseerd. De daarbij ontstane stroom kan de gegevensoverdracht storen.

 Sluit de afscherming alleen eenzijdig aan op het gemeenschappelijke aardingspotentiaal, bijv. op de lezer (WP-variant: afscherming is aan de lezerzijde samen met massa naar buiten geleid).

7.1 Controller

Nr.	Print- plaat	Toelichting
]	-	GND Optionele aansluiting van een externe voeding (massa).
2	+	V_{IN} . Aansluiting van een externe voeding (pluspool).
3		Relais 1: NO (Normally Open). Dit contact wordt ver- bonden met C wanneer het relais schakelt.

SmartRelais 3-systeem (Manual)

Nr.	Print- plaat	Toelichting		
4		Relais 1: C (Common). Gemeenschappelijke aansluiting van de wisselcontacten.		
5		Relais 1: NC (Normally Closed). Dit contact wordt ge- scheiden van C wanneer het relais schakelt.		
6		Relais 2: NO (Normally Open). Dit contact wordt ver- bonden met C wanneer het relais schakelt. Beschik- baarheid in de aansturing afhankelijk van de firmware.		
7		Relais 2: C (Common). Gemeenschappelijke aanslui- ting van de wisselcontacten. Beschikbaarheid in de aansturing afhankelijk van de firmware.		
8		Relais 2: NC (Normally Closed). Dit contact wordt ge- scheiden van C wanneer het relais schakelt. Beschik- baarheid in de aansturing afhankelijk van de firmware.		
9	+]	Lezer 1: Stroomverzorging. Spanning komt overeen met V _{IN} - 1 V resp. 12 V - 1 V (PoE).		
10	-	Lezer 1: GND.		
11	B1	Lezer 1: Dataleiding B.		
12	A1	Lezer 1: Dataleiding A.		
13	+2	Lezer 2: Stroomverzorging. Spanning komt overeen met V _{IN} - 1 V resp. 12 V - 1 V (PoE).		
14	-	Lezer 2: GND.		
15	B2	Lezer 2: Dataleiding B.		
16	A2	Lezer 2: Dataleiding A.		
17	+3	Lezer 3: Stroomverzorging. Spanning komt overeen met V _{IN} - 1 V resp. 12 V - 1 V (PoE).		
18	-	Lezer 3: GND.		
19	B3	Lezer 3 / SmartOutput-module: Dataleiding B.		
20	A3	Lezer 3 / SmartOutput-module: Dataleiding A.		
21	04	Seriële poort: Open-Drain, Dataleiding 4.		
22	03	Seriële poort: Open-Drain, Dataleiding 3.		
23	02	Seriële poort: Open-Drain, Dataleiding 2.		
24	01	Seriële poort: Open-Drain, Dataleiding 1.		
25	0+	Seriële poort: Stroomverzorging. Spanning komt over- een met V _{IN} - 1 V resp. 12 V - 1 V (PoE).		

Nr.	Print- plaat	Toelichting
26	13	Ingang 3: push-to-open. Het relais schakelt zodra dit contact met I+ (contact 30) wordt verbonden.
27	12	Ingang 2: Aansluiting externe componenten.
28	11	Ingang 1: Aansluiting externe componenten.
29	-	Uitgang: GND.
30	+	Uitgang: Stroomverzorging. Spanning komt overeen met V _{IN} - 1 V resp. 12 V - 1 V (PoE).

7.2 Lezer

Lezeraansluiting	SREL3 Controlleraan- sluiting	Signaal	
А	A1/A2/A3	RS-485: Dataleiding A	
В	B1/B2/B3	RS-485: Dataleiding B	

SmartRelais 3-systeem (Manual)

Lezeraansluiting	SREL3 Controlleraan- sluiting	Signaal	
-	-	GND. Dient voor het aanbrengen van de ge- meenschappelijke aar- ding voor de dataleidin- gen. Willekeurige aar- ding naar de SREL3 Controller.	
+	+	V _{IN} . Aansluiting voor stroomverzorging (ex- tern door controller).	
_	- (optioneel)	GND. Aansluiting voor externe stroomverzor- ging. Elektrisch verbon- den met lezeraanslui- ting 3. Is alleen nodig bij externe stroomverzor- ging.	

WP-versie

De lezer wordt in de weerbestendige WP-variant geleverd met een 2 m lange, voorbereide kabel.

Lezeraansluiting	Aderkleur in de kabel	SREL3 Control- leraansluiting	Signaal
А	geel	A1/A2/A3	RS-485: Datalei- ding A
В	bruin	B1/B2/B3	RS-485: Datalei- ding B

SmartRelais 3-systeem (Manual)

Lezeraansluiting	Aderkleur in de kabel	SREL3 Control- leraansluiting	Signaal
_	groen	_	GND. Dient voor het aanbrengen van de gemeen- schappelijke aar- ding voor de da- taleidingen. Wil- lekeurige aarding naar de SREL3 Controller.
	zwart (Alleen aan het eind van de reader uitge- bracht)	-	GND. Aansluiting van de afscher- ming van de ka- bel aan de ge- meenschappelij- ke aarding van lezer en control- ler.
+	wit	+	V _{IN} . Aansluiting voor stroomver- zorging (extern door controller).
_		- (optioneel)	GND. Aansluiting voor externe stroomverzor- ging. Elektrisch verbonden met lezeraansluiting 3. Is alleen nodig bij externe stroomverzor- ging.

7.3 SmartOutput-module

 $28\ 27\ 26\ 25\ 24\ 23\ 22\ 21\ 20\ 19\ 18\ 17\ 16\ 15$

Nr.	Print- plaat	Toelichting
		Brownout-herkenning: Open-Collector, bij voldoende verzorgingsspanning met GND verbonden.
1	Out	Deze uitgang schakelt bij daling van de verzor- gingsspanning bij V _{IN} onder 10,0 V _{DC} (±0,5 V _{DC}). Ge- woonlijk wordt de massa-aansluiting van de spoel van het AUX-relais aangesloten. Bij een dalende verzor- gingsspanning bij V _{IN} schakelt dan het AUX-relais, voor- dat de andere relaiscontacten door het verlies aan spanning ongecontroleerd schakelen. Bij het aanleggen van de verzorgingsspanning schakelt de uitgang pas, wanneer de module volledig geïnitialiseerd is en er geen ongecontroleerd schakelende relaiscontacten meer kunnen optreden.
2	-	Geïsoleerde digitale ingang. Momenteel niet in gebruik.
3	+	Geïsoleerde digitale ingang. Momenteel niet in gebruik.
4	В	Controlleraansluiting: Dataleiding B, wordt aan het contact voor Lezer 3 aangesloten.
5	A	Controlleraansluiting: Dataleiding A, wordt aan het contact voor Lezer 3 aangesloten.
6	С	Controlleraansluiting: Massa, wordt aan het contact voor Lezer 3 aangesloten.

Nr.	Print- plaat	Toelichting
7	4a	Relais 4: Potentiaalvrij contact (NC, in software behan- delt als NO), wordt afhankelijk van de autorisaties ge- schakeld.
8	4b	Relais 4: Potentiaalvrij contact (NC, in software behan- delt als NO), wordt afhankelijk van de autorisaties ge- schakeld.
9	За	Relais 3: Potentiaalvrij contact (NC, in software behan- delt als NO), wordt afhankelijk van de autorisaties ge- schakeld.
10	Зb	Relais 3: Potentiaalvrij contact (NC, in software behan- delt als NO), wordt afhankelijk van de autorisaties ge- schakeld.
11	2a	Relais 2: Potentiaalvrij contact (NC, in software behan- delt als NO), wordt afhankelijk van de autorisaties ge- schakeld.
12	2b	Relais 2: Potentiaalvrij contact (NC, in software behan- delt als NO), wordt afhankelijk van de autorisaties ge- schakeld.
13	la	Relais 1: Potentiaalvrij contact (NC, in software behan- delt als NO), wordt afhankelijk van de autorisaties ge- schakeld.
14	1b	Relais 1: Potentiaalvrij contact (NC, in software behan- delt als NO), wordt afhankelijk van de autorisaties ge- schakeld.
15	5b	Relais 5: Potentiaalvrij contact (NC, in software behan- delt als NO), wordt afhankelijk van de autorisaties ge- schakeld.
16	5a	Relais 5: Potentiaalvrij contact (NC, in software behan- delt als NO), wordt afhankelijk van de autorisaties ge- schakeld.
17	6b	Relais 6: Potentiaalvrij contact (NC, in software behan- delt als NO), wordt afhankelijk van de autorisaties ge- schakeld.
18	ба	Relais 6: Potentiaalvrij contact (NC, in software behan- delt als NO), wordt afhankelijk van de autorisaties ge- schakeld.

SmartRelais 3-systeem (Manual)

Nr.	Print- plaat	Toelichting
19	7b	Relais 7: Potentiaalvrij contact (NC, in software behan- delt als NO), wordt afhankelijk van de autorisaties ge- schakeld.
20	7a	Relais 7: Potentiaalvrij contact (NC, in software behan- delt als NO), wordt afhankelijk van de autorisaties ge- schakeld.
21	8b	Relais 8: Potentiaalvrij contact (NC, in software behan- delt als NO), wordt afhankelijk van de autorisaties ge- schakeld.
22	8a	Relais 8: Potentiaalvrij contact (NC, in software behan- delt als NO), wordt afhankelijk van de autorisaties ge- schakeld.
23	К2	AUX-relais: Potentiaalvrij contact (NO). Contact wordt met K1 (nummer 26) verbonden, wanneer de spoel van spanning wordt voorzien.
		(nummer 24).
		V_{IN} . Aansluiting voor spanningsverzorging.
24	+	Af fabriek uitgerust met een wegneembare brug naar K2 (nummer 23).
25	Д+	AUX-relais: Plus-aansluiting van de spoel. AUX-relais schakelt wanneer de spoel van spanning wordt voor- zien.
		Af fabriek uitgerust met een wegneembare brug naar K1 (nummer 26).
26	KI	AUX-relais: Potentiaalvrij contact (sluiter). Contact wordt met K2 (nummer 23) verbonden, wanneer de spoel van spanning wordt voorzien.
		Af fabriek uitgerust met een wegneembare brug naar A+ (nummer 25).
27	A-	AUX-relais: Min-aansluiting van de spoel. AUX-relais schakelt wanneer de spoel van spanning wordt voor- zien.
28	-	GND. Aansluiting voor spanningsverzorging.

8. Configureren

8.1 Uitpakken en systeemtest

Leveromvang

Controleer na ontvangst meteen of de levering compleet is. Meegeleverd zijn – tenzij anders afgesproken – de volgende componenten:

Controller	Controller	lx
	Bijsluiter	lx
Lezer	Lezer	lx
	Bijsluiter	lx
SmartOutput-mo-	SmartOutput-module	lx
dule	Jumpers (voorgemonteerd)	2x
	Bijsluiter	lx

Systeemtest

U kunt vóór de montage en programmering controleren of de geleverde componenten naar behoren functioneren. Ga daarbij als volgt te werk.

- 1. Sluit de bedrading van de componenten aan (zie *Bedrading* [> 62]).
- 2. Sluit de componenten aan op de netvoeding (controller als laatste aansluiten).
- 3. Wacht een paar seconden, totdat alle componenten bedrijfsklaar zijn.
 - → De controller knippert eerst in alle kleuren en wordt dan groen.
 - ➡ De lezer knippert ook eerst in alle kleuren, piept en knippert dan niet meer.
 - → Optionele SmartOutput-module: relaiscontacten worden geopend (weergave door leds en hoorbaar klikken), knipperen daarna groen.
- 4. Gebruik een identificatiemedium bij de lezer (lege transponder of lege Desfire-kaart).
- → De lezer knippert twee keer groen en piept.
- → In de controller ingebouwd relais schakelt (contacten 3, 4 en 5).

8.2 Configuratie

Met de LSM-software kunt u de controller en de lezers van het SREL3-ADV-systeem programmeren en configureren. Andere componenten van het SREL3-ADV-systeem hoeven niet geprogrammeerd te worden.

OPMERKING

Eerste programmering via USB

De controller kan via TCP/IP worden opgeroepen. Maar in de uitlevermodus is er geen IP-adres toegewezen. Daarom moet de eerste programmering, waarbij een IP-adres wordt toegewezen, worden uitgevoerd met een USBverbinding.

- Componenten van spanning voorzien.
- ✓ Controller met USB-kabel op pc aangesloten.
- ✓ Lezer op de controller aangesloten (zie *Bedrading* [▶ 62]).
- ✓ LSM geïnstalleerd en als administrator opgestart.
- Aan systeemvoorwaarden voldaan.
- Communicatieknooppunt ingericht (VNHost en CommNode, zie LSMmanual).
- 1. Leg een nieuw G2-sluitsysteem aan.
- 2. Open de instellingen van het sluitsysteem door te klikken op de button
- 3. Ga naar de registerkaart [Kaartbeheer G2].
- 4. Open het dropdown-menu ▼ Type kaart.
- 5. Selecteer uw type kaart.
- 6. Open het dropdown-menu ▼ Configuratie.
- 7. Selecteer een configuratie.

OPMERKING

Geschikte configuraties

Voor het gebruik in een sluitsysteem met een SREL3-ADV-systeem zijn uitsluitend AV-configuraties geschikt.

- 8. Klik op de button overnemen.
- 9. Klik op de button beëindigen.
 - → De Matrix-weergave wordt weer zichtbaar.
- 10. Leg een nieuw sluitsysteem van het type G2-Smart Relay 3 aan.
- 11. Open de instellingen door dubbel te klikken op de vermelding van het SmartRelais 3 in de Matrix.
- 12. Ga naar de registerkaart [IP-instellingen] (Hulp voor de IP-instellingen, zie *IP-instellingen bepalen* [▶ 29]).
- 13. Voer een IP-adres in.
- 14. Voer een IP-subnetmasker in.
- 15. Open het dropdown-menu ▼ Communicatieknooppunt.

16. Selecteer een bijpassend communicatieknooppunt (wanneer u nog geen communicatieknooppunt voor de dienst hebt aangemaakt, moet u er eerst een aanleggen. Zie *Communicatieknooppunt aanmaken* [> 30]).

OPMERKING

Keuze van het communicatieknooppunt

Wanneer u gebruik maakt van een CommNode-server én een VNHost-server (gebruik van tasks of events naast het virtuele netwerk), dan selecteert u hier de invoer CommNodeServer.

Wanneer u alleen gebruik maakt van een VNHost-server (gebruik van een virtueel netwerk), dan selecteert u hier de invoer VNHost.

Wanneer u van geen van beide gebruik maakt, dan selecteert u hier de invoer GUINode.

- 17. Klik op de button overnemen.
- 18. Klik op de button beëindigen .
- 19. Open het contextmenu met een klik op de rechtermuistoets op de invoer van het SmartRelais 3 in de Matrix.

20.Kies de invoer programmeren uit.

meervoudig kopiëren	
regel/kolom toestaan	
regel/kolom blokkeren	
programmeren	
Transponderverlies	
eigenschappen	
3 II	
Volgende gegevensinvoer voor deur/trans.	
Volgende gegevensinvoer voor deur/trans. nieuw	>
Volgende gegevensinvoer voor deur/trans. nieuw zoeken	>
Volgende gegevensinvoer voor deur/trans. nieuw zoeken Groep of bereik sorteren	>

21. Selecteer in het programmeringsvenster "USB-verbinding naar het TCPknooppunt".

USB-verbinding naar het TCP-knooppunt	•
SmartCD TCP-knooppunt	
USB-verbinding naar het TCP-knooppunt	
SmartCD Mifare	

- 22. Klik op de button programmeren.
 - → De programmering begint.
- 23. Wacht het programmeren af.
- 24. Selecteer via | netwerk | de invoer Communicatieknooppunt .

netw	/erk	Opties	Venster	Help	
	Acti	veren var	n het sluitii	ng	
	Verz	ameltake	n		>
	geb	eurtenism	nanager		
	task	manager			
	E-m	ail berich	ten		
	Virtu	ueel netw	erk		
	Con	nmunicat	ieknoopp	unt	
	Loka	ale aanslu	iitingen		
	Wav	/eNet beh	ieren		
	Wav	eNet Ma	nager		
	Wav	eNet-top	ologie im	porteren	
	LON	I-netwerk	beheren		
	Terr	ninalserve	er-Client ir	nstellingen	

- 25. Mocht u meer dan één communicatieknooppunt hebben aangemaakt, ga dan naar uw zojuist aangemaakte communicatieknooppunt. Gebruik de toetsen > of > en < of >.
- 26. Sluit de dienst *SimonsVoss VNHost Server* af of de *SimonsVoss Comm-Node Server.*
- 27. Klik op de button Configbestanden .
- 28.0pen de Windows-diensten.
- 29. Bewaar de Config-bestanden van de dienst lokaal op uw pc.

30.Kopieer de lokaal bewaarde Config-bestanden naar de installatiemap van de dienst (standaard: C:\Programme (x86)\SimonsVoss\VNHost bzw. C:\Program Files (x86)\SimonsVoss\CommNodeSvr_3_4).

OPMERKING

Alle drie de XML-bestanden moeten direct naar de installatiemap gekopieerd worden, niet in een ondermap.

31. Open de dienst *SimonsVoss VNHost Server* of de *SimonsVoss Comm-Node Server*.

OPMERKING

Controleer met een klik op de button Ping of de dienst draait en reageert. Wanneer de dienst reageert, kunt u doorgaan. Anders probeert u opnieuw de dienst te starten.

- 32. Klik in de LSM op de button Verzenden.
 - → De controller is via het netwerk te bereiken.
- 33. Beëindig de diensten *SimonsVoss VNHost Server* en *SimonsVoss CommNode Server*.
- 34.Richt uw back-up opnieuw in (zie LSM-manual).
- 35. Open de diensten *SimonsVoss VNHost Server* en *SimonsVoss Comm-Node Server* opnieuw.
- → De controller is via het netwerk te bereiken en knippert blauw.

8.2.1 IP-instellingen bepalen

De controller van het SREL3-ADV-systeem heeft voor gebruik in het netwerk een statisch IPv4-adres nodig. Vraag uw IT-afdeling of de systeembeheerder van uw netwerk om u een vrij IPv4-adres toe te wijzen en de volgende gegevens bekend te maken:

- IPv4-adres
- bijbehorend subnetmasker
- standaard Gateway (alleen indien zich niet alle apparaten van de LSM of het Systeem 3060 in hetzelfde netwerk bevinden)

Vanaf de LSM-versie 3.4 SP1 kunt u echter ook DHCP benutten. Hiervoor moet u in de registerkaart [IP-instellingen] het hokje 🔽 DHCP-geactiveerd aanvinken.

8.2.2 Communicatieknooppunt aanmaken

- ✓ LSM opgestart.
- 1. Kies via de | netwerk | de invoer Communicatieknooppunt uit.
- 2. Voer de naam van het communicatieknooppunt in (vrij kiesbaar, aanbevolen: VNHost of CommNode).
- 3. Voer de hostnaam van de pc in waarop de *SimonsVoss VNHost Server* is geïnstalleerd.

OPMERKING

U kunt de hostnaam als volgt bepalen:

- 1. druk op de Windows-toets.
- 2. Voer cmd in.
- 3. Bevestig de invoer met de Enter-toets.
 - └→ Venster "Invoerverzoek" gaat open.
- 4. Voer *hostname* in.
- 5. Bevestig de invoer met de Enter-toets.
- → De hostnaam van de pc wordt weergegeven.
- 4. Voer de complete naam van de pc (Fully Qualified Domain Name) in.

OPMERKING

De invoer is alleen nodig wanneer met LSM-clients of databaseservers in verschillende domeinen wordt gewerkt. De FQDN bestaat uit de lokale pcnaam en het domein, bijv. COMPUTER.NETWORK.LOCAL. U kunt het domein zelf vaststellen:

- 1. druk op de Windows-toets.
- 2. Voer cmd in.
- 3. Bevestig de invoer met de Enter-toets.
 - └→ Venster "Invoerverzoek" gaat open.
- 4. Voer echo %userDNSdomain% in.
- 5. Bevestig de invoer met de Enter-toets.
- → Het domein van de pc wordt weergegeven.
- 5. Klik op de button overnemen.
- → Het communicatieknooppunt is aangemaakt.

8.3 Programmering

De programmering is niet anders dan bij andere sluitelementen. De controller van het SREL3-ADV-systeem kan naar keuze via een USB-kabel of een netwerkverbinding geprogrammeerd worden (uitzondering: de eerste programmering).

USB-programmering

- ✓ Controller met USB-kabel op pc aangesloten.
- ✓ Componenten van spanning voorzien.
- 1. Open het contextmenu met een klik op de rechtermuistoets op de invoer van het SmartRelais 3 in de Matrix.
- 2. Kies de vermelding programmeren uit.

meervoudig kopiëren regel/kolom toestaan regel/kolom blokkeren	
programmeren	
Transponderverlies eigenschappen	
Volgende gegevensinvoer voor deur/trans. nieuw zoeken	>
Groep of bereik sorteren	
Groep of bereik updaten	

- 3. Open het dropdown-menu ▼ type.
- 4. Kies de invoer "USB-verbinding naar het TCP-knooppunt" uit.

USB-verbinding naar het TCP-knooppunt	•
SmartCD	
TCP-knooppunt	
USB-verbinding naar het TCP-knooppunt	
SmartCD Mifare	

- 5. Klik op de button programmeren.
- → De programmering begint.

Netwerk-programmering

- ✓ De controller is al geprogrammeerd.
- ✓ De controller is via een netwerk verbonden met de pc.
- Componenten van spanning voorzien.
- 1. Open het contextmenu met een klik op de rechtermuistoets op de invoer van het SmartRelais 3 in de Matrix.
- 2. Kies de vermelding programmeren uit.

meervoudig kopiëren regel/kolom toestaan	
regel/kolom blokkeren	
programmeren	
Transponderverlies	
eigenschappen	
Volgende gegevensinvoer voor deur/trans.	
nieuw	>
nieuw zoeken	>
nieuw zoeken Groep of bereik sorteren	>

- 3. Open het dropdown-menu ▼ type.
- 4. Kies de invoer "TCP-knooppunt" uit.

TCP-knooppunt	-
SmartCD	
TCP-knooppunt	
USB-verbinding naar het TCP-knooppunt	
SmartCD Mifare	

- 5. Klik op de button programmeren.
- → De programmering begint.

8.3.1 SmartOutput-module aanmaken

De controller van het SREL3-ADV-systeem zoekt na het aanleggen van een spanningsverzorging naar SmartOutput-modules. Wanneer aangesloten SmartOutput-modules een stroomvoorziening hebben, worden ze herkend door de controller. Voor de programmering is het nodig dat het aantal herkende SmartOutput-modules overeenkomt met het vermelde aantal in de LSM. U kunt SmartOutput-modules als volgt toevoegen.

- ✓ Componenten naar behoren aangesloten (zie *Bedrading* [▶ 62]).
- Componenten van spanning voorzien.
- ✓ Controller gereset (zie *Controller resetten* [▶ 34]).
- 1. Open de instellingen door dubbel te klikken op de vermelding van het SmartRelais 3 in de Matrix.
- 2. Ga naar de registerkaart [Configuratie / data].
- 3. Klik op de button Uitgebreide configuratie.
 - → Het venster "Uitgebreide configuratie" gaat open.

doel		status	
Iijdgestuurde omschakeling Andmatige vergrendeling	automatische vergrendeling	Iijdgestuurde omschakeling	automatische verarendeling
handmatige ontgrendeling			
transponder actief:		transponder actief:	C automatische ontgrendeling
C altijd	alleen indien vergrendeld	C altijd	alleen indien vergrendeld
Beeper uitschakelen seriële poort	geen	Beeper uitschakelen seriële poort	geen
Uitbreidingsmodule		Uitbreidingsmodule	
aantal	1		
uitgangen inverteren		uitgangen inverteren	
L			
			-01

- 4. Voer onder het punt "Uitbreidingsmodule" het aantal aangesloten SmartOutput-modules in.
- 5. Klik op de button OK.
 - → Het venster gaat dicht.
- 6. Klik op de button overnemen.
- 7. Klik op de button beëindigen.
 - → LSM keert terug in de Matrix.
- 8. Open het contextmenu met een klik op de rechtermuistoets op de invoer van het SmartRelais 3 in de Matrix.

9. Kies de invoer programmeren uit.

- 10. Open het dropdown-menu ▼ type.
- 11. Kies de invoer "USB-verbinding naar het TCP-knooppunt" uit.

USB-verbinding naar het TCP-knooppunt	-
SmartCD TCP-knooppunt	
USB-verbinding naar het TCP-knooppunt	
SmartCD Mifare	

- 12. Klik op de button programmeren.
- \mapsto De programmering begint.

8.3.2 Controller resetten

Het resetten van de controller is nodig wanneer er wijzigingen zijn uitgevoerd aan aangesloten componenten. Hiertoe behoren:

- SmartOutput-module toegevoegd
- SmartOutput-module verwijderd
- Lezer toegevoegd
- Lezer verwijderd

Het resetten wist de geprogrammeerde instellingen.

OPMERKING

Alleen de hardware-instellingen en passagelijsten op de controller worden gereset. De IP-instelling blijft behouden!

Uitgezonderd zijn hierbij de opgeslagen IP-instellingen van de eerste programmering. De controller blijft bereikbaar via het opgeslagen IP-adres. Daarvoor hoeft na het resetten niet beslist een verbinding met een USBkabel gemaakt te worden.

8.3.2.1 Controller met USB-kabel resetten

De controller kan worden gereset met een USB-kabel. Deze optie biedt zich aan als de controller nog niet is ingebouwd en nog gemakkelijk fysiek bereikbaar is.

- ✓ Componenten naar behoren aangesloten (zie *Bedrading* [▶ 62]).
- Componenten van spanning voorzien.
- ✓ Controller met USB-kabel op pc aangesloten.
- 1. Markeer in de Matrix de invoer van de controller van het SmartRelais 3.

2. Kies via de | programmering | de invoer Geselecteerde sluiting uitlezen / klok instellen uit.

prog	rammering	netwerk	Opties	Venster	Help		
	transponder					Ctrl+Shift+T	
	Sluiting					Ctrl+Shift+L	
	Geselecteerd	le sluiting u	uitlezen /	klok inste	llen	Ctrl+Shift+K	
	Sluiting uitle	zen				Shift+U	
	Mifare sluiting uitlezen					Ctrl+Shift+B	
	transponder uitlezen					Ctrl+Shift+R	
	G1 kaart uitlezen					Ctrl+Shift+E	
	G2 kaart uitlezen					Ctrl+Shift+F	
	Sluiting uitlezen via USB bijzondere functies						
							>
	noodopening uitvoeren						
	SmartCD tes	ten					
	SmartCD Mi	fare testen					
	LSM Mobile						>

→ Venster "Sluiting uitlezen" gaat open.

Sluiting uitlezen		\times
sluitsysteem: Deur / Sluiting:	Testprojekt Postfach / 07PKN1C	
Programmeerapparaat:		
Туре:	USB-verbinding naar het TCP-knooppunt	
Apparaat:	USB-Anschluß	
uitlezen	tijd stellen beëindigen	

3. Open het dropdown-menu ▼ type.
4. Kies de invoer "USB-verbinding naar het TCP-knooppunt" uit.

USB-verbinding naar het TCP-knooppunt	-
SmartCD	
TCP-knooppunt	
USB-verbinding naar het TCP-knooppunt	
SmartCD Mifare	

- 5. Klik op de button uitlezen.
 - → Het sluitelement wordt uitgelezen.
 - └→ Venster "G2-Smart Relay 3" gaat open.
- 6. Klik op de button Software-reset .
 - └ Venster "sluiting terugzetten" gaat open.
- 7. Voer het wachtwoord van het sluitsysteem in of kopieer het uit de database.
- 8. Klik op de button Software-reset .
 - → Het sluitelement wordt gereset.
- → Sluitelement gereset.
- 8.3.2.2 Controller via het netwerk resetten

De controller kan daarnaast na de eerste programmering ook via het netwerk worden gereset. Deze optie biedt zich aan als de controller al is ingebouwd en niet fysiek bereikbaar is.

- ✓ Componenten naar behoren aangesloten (zie *Bedrading* [▶ 62]).
- ✓ Componenten van spanning voorzien.
- ✓ De controller is al geprogrammeerd.
- ✓ De controller is via een netwerk verbonden met de pc.
- 1. Markeer in de Matrix de invoer van de controller van het SmartRelais 3.

2. Kies via de | programmering | de invoer Geselecteerde sluiting uitlezen / klok instellen uit.

prog	rammering	netwerk	Opties	Venster	Help		
	transponder					Ctrl+Shift+T	
	Sluiting					Ctrl+Shift+L	
	Geselecteerd	le sluiting u	iitlezen /	klok inste	llen	Ctrl+Shift+K	
	Sluiting uitle	zen				Shift+U	
	Mifare sluitir	ng uitlezen				Ctrl+Shift+B	
	transponder	uitlezen				Ctrl+Shift+R	
	G1 kaart uitle	ezen				Ctrl+Shift+E	
	G2 kaart uitle	ezen				Ctrl+Shift+F	
	Sluiting uitle	zen via USE	3				
	bijzondere fu	uncties					>
	noodopenin	g uitvoerer	n				
	SmartCD tes	ten					
	SmartCD Mit	fare testen					
	LSM Mobile						>

^{└→} Venster "Sluiting uitlezen" gaat open.

Sluiting uitlezen		×
sluitsysteem:	Testprojekt	-
Deur / Sluiting:	Postfach / 07PKN1C	-
Programmeerapparaat:		
Туре:	TCP-knooppunt	–
Apparaat:	192.168.100.113	-
uitlezen	tijd stellen	beëindigen

3. Open het dropdown-menu ▼ type.

4. Kies de invoer "TCP-knooppunt" uit.

- 5. Klik op de button uitlezen.
 - → Het sluitelement wordt uitgelezen.
 - → Venster "G2-Smart Relay 3" gaat open.
- 6. Klik op de button Software-reset .
 - → Venster "sluiting terugzetten" gaat open.
- 7. Voer het wachtwoord van het sluitsysteem in of kopieer het uit de database.
- 8. Klik op de button Software-reset .
 - → Het sluitelement wordt gereset.
- → Sluitelement gereset.

8.4 Applicatievoorbeelden

In dit hoofdstuk wordt het samenspel van de componenten van het SREL3-ADV-systeem uitgelegd en worden exemplarisch een paar toepassingsvoorbeelden getoond.

LET OP

Overbelasting ingebouwd relais

De toegestane stroom en spanning mogen niet worden overschreden.

- 1. Let op de specificaties (zie *Eigenschappen [•* 174]).
- 2. Controleer dat de belasting van het relais niet op een ander contact is gezet of anderszins wordt verhoogd.

8.4.1 Basisprincipe

Het SmartRelais3-systeem bestaat altijd uit een controller, minstens één lezer en optionele SmartOutput-modules.

Om veiligheidsredenen kan de lezer de herkende identificatiemedia niet beoordelen. De communicatie tussen lezer en controller is beveiligd. Daarom kan de lezer ook zonder bedenken in onbeveiligde zones worden geïnstalleerd.

8.4.2 Gateway-functie

Het SREL3-ADV-systeem kan – onafhankelijk van het gebruik van het relaiscontact – ook als Gateway voor een virtueel netwerk gebruikt worden. Elk identificatiemedium dat zich aanmeldt bij één van de maximaal drie lezers wordt op de nieuwste stand gebracht. Hierbij moet een onderscheid worden gemaakt tussen netwerkafhankelijke en -onafhankelijke functies.

Netwerkonafhankelijk

- Tijdbudgets opladen: onafhankelijk van het netwerk kunnen gebruikers op elk gewenst moment hun tijdbudget weer opladen.
- Automatische verspreiding van blacklists: al in de controller opgeslagen IDs met bedieningsfuncties worden ook zonder netwerkverbinding verspreidt in het virtuele netwerk.

Deels netwerkafhankelijk

Wanneer de netwerkverbinding weer hersteld is, geeft de controller achteraf informatie door die tijdens de uitval is verzameld:

- bewijzen van overdracht van blacklists: sluitelementen die de gewijzigde rechten voor transponders hebben ontvangen, geven hiervoor een bevestiging af. Via het virtuele netwerk wordt deze bevestiging doorgegeven aan de controller.
- Batterijalarmen: sluitelementen met batterijen die bijna leeg zijn, geven in het virtuele netwerk via de identificatiemedia een batterijalarm door aan de controller.
- Passagelijsten: de passagelijsten van SmartCards worden onafhankelijk van het netwerk uitgelezen en door de controller bewaard.

Netwerkafhankelijk

Bij een bestaande netwerkverbinding zijn andere functies van het virtuele netwerk bij de Gateway beschikbaar:

- toewijzing individuele rechten: na de aanmelding van een identificatiemedium roept de controller via het netwerk de actuele rechten voor de betreffende transponder op bij de VNHost-server. Via de lezer worden de gewijzigde rechten op de transponder eventueel bijgewerkt.
- Configuratiewijzigingen: de configuratiewijzigingen bij de identificatiemedia (bijvoorbeeld een andere tijdgroep) worden door de controller opgeroepen bij de VNHost-server.

Toewijzing van individuele blacklist-id's: in het virtuele netwerk kunnen maximaal twee te blokkeren id's ook worden opgeslagen op geselecteerde identificatiemedia. Hiervoor roept de controller bij de aanmelding van een dergelijk identificatiemedium de te blokkeren id's op bij de VBHost-server.

8.4.3 Totaaloverzicht

Communicatie van de controller met de LSM

De controller communiceert niet rechtstreeks met de database. Bij de communicatie tussen de controller en de database moet een onderscheid gemaakt worden.

- Gebruik in het virtuele netwerk: de controller wordt aan de ene kant geprogrammeerd door de LSM en aan de andere kant vraagt de controller zelf informatie op over het herkende ID-medium bij de VNHost.
- Gebruik zonder virtueel netwerk: de controller vraagt zelfstandig geen informatie op. Wijzigingen moeten geprogrammeerd worden.

Gebeurtenissen bij de controller, zoals een ingedrukte toets, worden via de CommNode aan de LSM-database gezonden.

Communicatie van de controller met de componenten

Een gebruiker kan zich bij één tot drie lezers aanmelden met een IDmedium. De lezer geeft de gecodeerde informatie door aan de controller (die zich in een beveiligde zone bevindt). De controller beoordeelt de informatie.

Gebruik in het virtuele netwerk: de controller vergelijkt de informatie met de VNHost.

- Gebruik zonder virtueel netwerk: de controller roept de lokaal opgeslagen gegevens uit de laatste programmering opnieuw op.
- Bij een geslaagde controle van de rechten kan de controller:
- een intern relais schakelen waarmee andermaal externe apparatuur aangestuurd kan worden.
- een herkend identificatiemedium via de seriële poort aan een extern apparaat zenden.
- een of meer uitgangen via een optionele keten SmartOutput-modules schakelen.

Naast de geslaagde identificatie kan de controller ook reageren op een digitale ingang en derhalve op een aangesloten toets of iets dergelijks reageren.

8.4.4 Oplossingen voor scenario's

Het SREL3-ADV-systeem is de beproefde oplossing voor een groot aantal toepassingen. Enkele hiervan presenteert dit hoofdstuk en laat zien hoe het SREL3-ADV-systeem wordt toegepast. In principe is de elektrische bedrading altijd volgens de beschrijving (zie *Bedrading* [\bullet 62]). Maar per toepassing kunnen de leidingslengte, kabelsoorten en aanleg variëren.

OPMERKING

Beveiligde zones zijn zones die alleen met een bevoegd identificatiemedium toegankelijk zijn, of op een andere manier beveiligd zijn tegen onbevoegde toegang.

GEVAAR

Letselgevaar door foutieve programmering

Het SREL3-ADV-systeem is niet geschikt voor de vervanging van bestaande veiligheidsvoorzieningen.

- 1. Controleer goed dat het SREL3-ADV-systeem alleen als extra beveiliging tot inzet komt.
- 2. Vervang bestaande veiligheidsvoorzieningen niet door het SREL3-ADVsysteem.

In de volgende hoofdstukken beschrijft de uitdrukking *onbeveiligde zone* een zone of een punt waar elke persoon toegang heeft. De uitdrukking *beveiligde zone* beschrijft een zone of een punt waar personen alleen toegang krijgen wanneer ze zich eerder minstens één maal met een geautoriseerd identificatiemedium als bevoegd hebben geïdentificeerd.

8.4.4.1 Deuren

Het SREL3-ADV-systeem kan worden gebruikt voor de beveiliging van deuren.

Deur met een lezer en een taster

Bij deze toepassing wordt de controller gemonteerd in een beveiligde zone (bijv. in het gebouw). Een externe lezer wordt aangebracht op de onbeveiligde zijde van de deur en kan identificatiemedia lezen. Doordat de communicatie van de lezer met de controller en de LSM beveiligd is, kan niemand gegevens manipuleren. Zodra de gegevens de controller bereiken, worden ze door de controller beoordeeld. Bij een bestaand virtueel netwerk en verbinding met de LSM (Ethernet) wordt actuele informatie door het identificatiemedium opgeroepen, of anders wordt de laatste intern bewaarde status gebruikt. Afhankelijk van het resultaat van de beoordeling initieert de controller de bijbehorende actie, bijvoorbeeld het schakelen van een relais.

De controller bezit ook een vooraf ingestelde, niet te herprogrammeren push-to-open-functie. Wanneer de betreffende contacten (zie *Controller* [> 17]) met elkaar worden verbonden, schakelt het relais. Het in de controller geïntegreerde relais kan zowel met een bevoegd identificatiemedium worden aangestuurd, alsook door verbinding van de betreffende contacten. Aan de contacten kunnen bijvoorbeeld één of meer tasters gemonteerd worden, die gebruikers in de beveiligde zones in plaats van een identificatiemedium kunnen gebruiken. Hiermee krijgt de gebruiker meer bedieningsgemak zonder verlies van controle van de deurstatus.

Wanneer de lezer moet worden beschermd tegen weersinvloeden, vandalisme of sabotage, dan kan een beschermende behuizing op de lezer gemonteerd worden (SREL2.COVER1).

Een speciale situatie vormen de ingangsdeuren van een gebouw.

- Eén van de ingangsdeuren moet door elke gebruiker dagelijks worden gepasseerd.
- Ingangsdeuren zijn aan één zijde blootgesteld aan weersinvloeden.
- Ingangsdeuren bevinden zich aan één zijde in een onbeveiligde zone.
- Ingangsdeuren moeten in noodsituaties ook zonder identificatiemedium te openen zijn.

Mocht een virtueel netwerk worden ingezet, dan biedt zich bij ingangsdeuren van gebouwen het gebruik als Gateway aan. De deur van een gebouw is een deur die door veel gebruikers dagelijks wordt gebruikt. Dit betekent dat elk hier gebruikte identificatiemedium met de lezer en dus ook via de controller met de LSM-database wordt vergeleken. Wijzigingen van rechten, te blokkeren id's en tijdbudgets worden zo efficiënt beheerd.

Via de seriële interface kunnen passages worden doorgegeven aan een extern systeem.

De stroomverzorging van de controller kan met een externe voedingseenheid, of via de netwerkleiding gebeuren. De lezer kan door de controller van stroom worden voorzien. Mocht het spanningsverlies te groot zijn, dan kan de lezer ook gevoed worden met een externe voedingseenheid (zie *Externe spanningsverzorging* [\bullet 63]). Voor de bedrading zie *Aansluiting van één of meerdere lezers* [> 62] en *Aansluiting van één of meerdere tasters* [> 65].

Gebruik met twee tasters

LET OP

Geen controle van de rechten

Door het gebruik van twee tasters in plaats van lezers kan iedereen die fysiek toegang heeft het relais bedienen.

Zorg ervoor dat onbevoegden dit sluitelement niet kunnen bereiken.

Het gebruik van een identificatiemedium is niet meer nodig. In plaats hiervan hoeft alleen op een taster gedrukt te worden om het relais te bedienen (in dit voorbeeld de schuifdeur te openen). Tegenover een puur elektrische verbinding biedt dit het voordeel dat u een overzicht hebt, wanneer het relais werd bediend en in welke toestand het momenteel is (zie *SmartSurveil* [> 153]).

Het relais is niet beveiligd tegen onbevoegde bediening. Daarom is dit schakelsysteem uitsluitend geschikt voor montage in een reeds beveiligde zone.

Voor de bedrading zie Aansluiting van één of meerdere tasters [> 65].

8.4.4.2 Slagboom

Een slagboom wordt door elke persoon gepasseerd die met een auto op een afgescheiden stuk terrein wil rijden (bijv. de parkeerplaats van een bedrijf). Hierbij kunnen niet alle personen een bevoegd identificatiemedium hebben, omdat dit veel te veel organisatorisch werk zou betekenen. Bovendien is een slagboom in de regel geïnstalleerd in de open lucht en daardoor blootgesteld aan weersinvloeden, vandalisme en sabotage.

Het SREL3-ADV-systeem heeft hiervoor een intelligente oplossing paraat. De controller wordt in een beveiligde zone gemonteerd, bijvoorbeeld de technische ruimte. Tegelijkertijd is een lezer nodig in de buurt van de slagboom. Hiervoor bestaan twee mogelijkheden:

- de lezer wordt geïnstalleerd in de regelkast van de slagboom. Deze variant is optisch onopvallend geïntegreerd. Hij biedt goede bescherming tegen weersinvloeden, vandalisme en sabotage.
- de lezer wordt geïnstalleerd op de regelkast van de slagboom. Deze variant is naar buiten goed zichtbaar en zorgt dat de gebruiker zijn of haar identificatiemedium eenvoudig kan plaatsen. In tegenstelling tot de montage in de regelkast is de reikwijdte van de lezer verbeterd. Met de beschermende behuizing (SREL2.COVER1) is bescherming tegen weersinvloeden, vandalisme en sabotage gegarandeerd.

De gebruiker kan vanuit de auto het identificatiemedium gebruiken om de autorisatie te laten controleren. Mocht de gebruiker geen identificatiemedium bezitten, maar wel verwacht worden, dan kan hij of zij zich (bijvoorbeeld via een intercom) toch aanmelden. Een andere persoon die zich bevindt in de beveiligde zone kan de gebruiker dan met een druk op de toets toch binnenlaten. Deze toets kan zich bijvoorbeeld bij een portier bevinden, die externe klanten alleen binnen de kantoortijden binnenlaat, terwijl gebruikers met een identificatiemedium te allen tijde doorgelaten worden.

Doordat de communicatie van de lezer met de controller en de LSM beveiligd is, kan niemand gegevens manipuleren. Zodra de gegevens de controller bereiken, worden ze door de controller beoordeeld. Bij een bestaand virtueel netwerk en verbinding met de LSM (Ethernet) wordt actuele informatie door het identificatiemedium opgeroepen, of anders wordt de laatste intern bewaarde status gebruikt. Afhankelijk van het resultaat van de beoordeling initieert de controller de bijbehorende actie, bijvoorbeeld het schakelen van een relais.

Indien een virtueel netwerk wordt gebruikt, biedt zich een toepassing als Gateway aan. De slagboom is één van de sluitelementen die intensief wordt gebruikt. Dit betekent dat talloze identificatiemedia al voor de toegangsdeur vergeleken zijn met de LSM-database. De Gateway bij de toegangsdeur van het gebouw kan dus ontlast worden. De lezer moet in dit geval goed zichtbaar voor de gebruiker geïnstalleerd zijn, zodat de terugkoppeling van de lezer voor de gebruiker zichtbaar of hoorbaar is.

De stroomverzorging van de controller kan met een externe voedingseenheid, of via de netwerkleiding gebeuren. De lezer kan door de controller van stroom worden voorzien. Mocht het spanningsverlies te groot zijn, dan kan de lezer ook gevoed worden met een externe voedingseenheid (zie *Externe spanningsverzorging* [\blacktriangleright 63]).

Omdat voor de motor van de slagboom sowieso een eigen stroomleiding nodig is, kan de stroomverzorging voor de lezer zonder probleem ook hierop worden aangesloten. Een voedingseenheid voorziet de lezer betrouwbaar van spanning, onafhankelijk van eventueel spanningsverlies door de lengte van de leiding.

Voor de bedrading, zie *Aansluiting van één of meerdere lezers* [> 62] en *Aansluiting van één of meerdere tasters* [> 65].

8.4.4.3 Lift

De lift is een geval op zich. Liftkooien zijn meestal met een liftkabel verbonden met hun omgeving. Maar het aantal mogelijke leidingen binnen de liftkabel is beperkt. Het SREL3-ADV-systeem heeft afhankelijk van de configuratie een verschillend aantal leidingen nodig.

In de lift is het gebruik van één of meerdere SmartOutput-modules sterk aan te bevelen, om voldoende relaiscontacten ter beschikking te hebben. Daar komt bij dat de controller op de liftkooi gemonteerd zou moeten worden, of er een netwerkverbinding door de liftkabel nodig zou zijn. Wanneer er gebruik wordt gemaakt van één of meerdere SmartOutputmodules, dan kan een effectieve toegangscontrole al in de lift gerealiseerd worden, door afhankelijk van de autorisatie alleen toetsen voor bepaalde etages te activeren.

De lezer en de SmartOutput-module worden in de lift geïnstalleerd. De gebruiker identificeert zich met het identificatiemedium in de lift.

Doordat de communicatie van de lezer met de controller en de LSM beveiligd is, kan niemand gegevens manipuleren. Zodra de gegevens de controller bereiken, worden ze door de controller beoordeeld. Bij een bestaand virtueel netwerk en verbinding met de LSM (Ethernet) wordt actuele informatie door het identificatiemedium opgeroepen, of anders wordt de laatste intern bewaarde status gebruikt. Afhankelijk van het resultaat van de beoordeling initieert de controller de bijbehorende actie, bijvoorbeeld het schakelen van een relais.

LET OP

Storende stralingen in de liftkabel

Leidingen in de liftkabel die gegevens moeten doorgeven, dienen afgeschermd te zijn (zie ook *Informatie over de bedrading* [> 184]).

Stroomverzorging vanuit de kooi

Voor deze mogelijke aansluiting zijn de minste vrije leidingen nodig in de liftkabel. Bovendien wordt spanningsverlies door te lange leidingen vermeden. De controller kan beschermd en buiten de lift ingebouwd worden (bijv. in de technische ruimte).

De lezer wordt **niet** via de controller van spanning voorzien. In plaats hiervan wordt hij gevoed via de reeds beschikbare spanningsverzorging van de liftkooi, die stroom levert voor de verlichting, de deuren, enz. Het kan nodig zijn de spanning aan te passen met een voedingseenheid, zodat deze zich binnen de specificaties bevindt voor de SmartOutput-module en de lezer (zie *Eigenschappen [> 174]*). De spanningen waarmee de afzonderlijke componenten worden verzorgt, hoeven niet identiek te zijn. Het is dus mogelijk de controller aan te sturen met 12 V, terwijl de lezer in de lift met 24 V wordt bediend.

Gemeenschappelijke aarding

In dit geval zijn vier extra leidingen voor de spanningsverzorging van de kooi nodig.

Leiding	Gebruik
1	Controller – lezer: Dataleiding A

Leiding	Gebruik
2	Controller – lezer: Dataleiding B
3	Controller – SmartOutput-module: Data- leiding A
4	Controller – SmartOutput-module: Data- leiding B

GEVAAR

Gevaar van een stroomstoot door netspanning

Door de verbinding van de ongevaarlijke massa (extra lage spanning) met een leiding die netspanning voert, kan een stroomstoot ontstaan.

- 1. Gebruik alleen leidingen met extra laagspanningspotentiaal (< 42 V) als gemeenschappelijke aarding!
- 2. Beveilig de leidingen die onder spanning staan tegen onopzettelijke aanraking!

OPMERKING

Een gemeenschappelijke aarding is nodig tussen controller, lezer en Smart-Output-modules. Hiervoor kan de aarding van de stroomverzorging van de kooi worden gebruikt om een leiding minder in de liftkabel nodig te hebben. Maar hiervoor moet wel de aarding van de controller verbonden worden met de aarding van de stroomverzorging van de kooi!

Voor de bedrading zie *Gemeenschappelijke aarding met spanningsverzorging* [▶ 89].

Gescheiden aarding

Wanneer het niet mogelijk is een gemeenschappelijke aarding voor de stroomverzorging van de kooi en de componenten te gebruiken, moet een extra leiding in de liftkabel worden gebruikt. In dit geval zijn vijf extra leidingen voor de spanningsverzorging van de kooi nodig.

Leiding	Gebruik
]	Aarding tussen controller, lezer en Smart- Output-modules
2	Controller – lezer: Dataleiding A
3	Controller – lezer: Dataleiding B
4	Controller – SmartOutput-module: Data- leiding A
5	Controller – SmartOutput-module: Data- leiding B

SmartRelais 3-systeem (Manual)

De aardingen van de spanningsverzorgingen zijn in dit geval geschieden van de gemeenschappelijke aarding.

Voor de bedrading zie *Gemeenschappelijke aarding met SREL3*componenten [▶ 90] en Aansluiting van één of meerdere lezers [▶ 62].

Stroomverzorging via liftkabel

Deze mogelijke aansluiting maakt geen gebruik van de reeds aanwezige liftelektronica. Hierdoor blijft de liftelektronica ongewijzigd en kan een nieuwe keuring onder bepaalde omstandigheden achterwege blijven.

De componenten worden uitsluitend via de liftkabel van spanning voorzien. De benodigde voedingseenheid bevindt zich aan het andere uiteinde van de liftkabel. Afhankelijk van de lengte van de liftkabel moet rekening worden gehouden met eventueel spanningsverlies, om binnen de specificaties te blijven (zie *Eigenschappen* [+ 174]).

LET OP

Functiestoringen door spanningsverlies

Spanningsverlies op de liftkabel door fysieke oorzaken kan bij spanningsverzorging van buiten de liftkooi tot een te lage spanning leiden.

- 1. Houd ook rekening met de lengte van de leiding.
- 2. Kies eventueel voor een variant met spanningsverzorging in de kooi (zie *Gemeenschappelijke aarding met spanningsverzorging* [• 89] und *Gemeenschappelijke aarding met SREL3-componenten* [• 90]).
- 3. Vergroot de diameter van de leiding door de leidingen in de liftkabel te bundelen.

Inzet: Lezer met SmartOutput-module en gemeenschappelijke verzorging

De SmartOutput-module heeft een eigen spanningsverzorging nodig. De lezer kan eveneens aan deze spanningsverzorging worden aangesloten. Naast reeds beschikbare leidingen zijn in de liftkabel zes vrije leidingen nodig.

Leiding	Gebruik
1	Aarding tussen controller, lezer en Smart- Output-modules
2	Pluspool van de spanningsverzorging
3	Controller – lezer: Dataleiding A
4	Controller – lezer: Dataleiding B
5	Controller – SmartOutput-module: Data- leiding A
б	Controller – SmartOutput-module: Data- leiding B

OPMERKING

De voedingseenheid voor de lezer en de SmartOutput-module kan achterwege blijven, wanneer de voedingseenheid van de controllers voldoende stroom kan leveren en voorziet in een spanning van 12 V_{DC} .

Voor de bedrading zie *Spanningsverzorging door liftkabel [> 91]* en *Aansluiting van één of meerdere lezers [> 62].*

Inzet: Lezer zonder SmartOutput-module

De controller voorziet de lezer van spanning. Er is geen extra voedingseenheid nodig. Naast reeds beschikbare leidingen zijn in de liftkabel vier vrije leidingen nodig.

Leiding	Gebruik
1	Aarding tussen controller en lezer
2	Pluspool van de spanningsverzorging
3	Controller – lezer: Dataleiding A
4	Controller – lezer: Dataleiding B

SmartRelais 3-systeem (Manual)

Voor de bedrading zie Spanningsverzorging door controller [> 94].

Inzet: Door de controller gevoede lezer met SmartOutput-module

De controller voorziet de lezer van spanning. Aangesloten SmartOutputmodules worden via een extra voedingseenheid aan het andere uiteinde van de liftkabel gevoed. Naast reeds beschikbare leidingen zijn in de liftkabel negen vrije leidingen nodig.

De lezer en de verbinding naar de controller hoeven niet verwijderd te worden. Het uitbreiden met SmartOutput-modules op een reeds bestaande verbinding is op die manier mogelijk.

Leiding	Gebruik
1	Aarding tussen SmartOutput-module en voedingseenheid
2	Pluspool van de spanningsverzorging tus- sen SmartOutput-module en voedings- eenheid
3	Aarding tussen controller en lezer
4	Pluspool van de spanningsverzorging tus- sen controller en lezer
5	Controller – SmartOutput-module: Data- leiding A

SmartRelais 3-systeem (Manual)

Leiding	Gebruik
6	Controller – SmartOutput-module: Data- leiding B
7	Controller – SmartOutput-module: Aar- ding van de dataleiding
8	Controller – lezer: Dataleiding A
9	Controller – lezer: Dataleiding B

8.4.4.4 Kluisje

Installaties met kluisjes worden door verschillende gebruikers benut. Alleen bevoegde personen mogen de voor hen bestemde kluisjes kunnen openen. Installaties met kluisjes zijn niet altijd in zones geïnstalleerd die beschermd zijn tegen weersinvloeden. Leveranciers, bezorgers en een select gezelschap personen moet in staat zijn, toegang te krijgen tot elk kluisje. Eventueel moeten afzonderlijk personen ook meerdere kluisjes kunnen openen.

De reeds aanwezige aansluitingen om de kluisjes te openen, kunnen bediend worden met de SmartOutput-modules – ongeacht of het hierbij gelijk- of wisselstroom betreft. Hiervoor worden de SmartOutput-modules parallel verbonden. Op elke SmartOutput-module kan het adres individueel worden ingesteld. Op die manier kunnen maximaal vijftien SmartOutput-modules met elk acht uitgangen aan het systeem worden aangesloten (met uitzondering van de situatie waarin de laatste module alleen vier relais ondersteunt). Zodra de controller een openingscommando aan het betreffende relais verzendt, wordt het kluisje geopend.

In de LSM kunnen aan identificatiemedia rechten toegewezen worden, die daarmee bevoegd zijn voor afzonderlijke kluisjes. Maar het is ook mogelijk de identificatiemedia te groeperen (bijvoorbeeld een afdeling) en deze groep rechten te geven voor een enkel relais (bijvoorbeeld een kluisje voor de hele afdeling). Door het identificatiemedium te controleren, blijft echter traceerbaar welke identificatiemedium uit de groep het relais heeft bediend (om bijvoorbeeld documenten weg te nemen). Wanneer afzonderlijke personen meerdere kluisjes moeten kunnen openen, kunnen de relais gegroepeerd worden (bijvoorbeeld verschillende vertrouwelijkheidsniveaus. Afhankelijk van de geclassificeerde vertrouwelijkheid wordt de kring bevoegde personen kleiner).

Voor de montage van de lezer bestaan er twee opties.

 De lezer wordt in een beschikbare behuizing geïnstalleerd (bijvoorbeeld van een intercom). Deze variant is optisch onzichtbaar geïntegreerd en biedt zeer goede bescherming tegen weersinvloeden, vandalisme en sabotage. De lezer wordt op de wand geïnstalleerd. Deze variant is naar buiten goed zichtbaar, zodat de gebruiker zijn of haar identificatiemedium makkelijker kan plaatsen. In tegenstelling tot montage in een behuizing is de reikwijdte van de lezer ook beter. Wanneer de lezer in de open lucht wordt geïnstalleerd, kan met de beschermende behuizing (SREL2.COVER1) gezorgd worden voor een bescherming tegen weersinvloeden, vandalisme en sabotage.

Voor noodsituaties kan een master-identificatiemedium worden aangemaakt. Hiermee kunnen meerdere of alle kluisjes tegelijkertijd worden geopend.

De stroomverzorging van de controller kan met een externe voedingseenheid, of via de netwerkleiding gebeuren. De lezer kan door de controller van stroom worden voorzien. Mocht het spanningsverlies te groot zijn, dan kan de lezer ook gevoed worden met een externe voedingseenheid (zie *Externe spanningsverzorging* [\bullet 63]).

Voor de bedrading zie *Aansluiting van één of meerdere lezers* [> 62] en *Aansluiting van één of meerdere SmartOutput-modules* [> 67].

8.4.4.5 Machinebeveiliging

Machines kunnen een aanzienlijk gevaar inhouden:

- snijwonden
- verbranding
- stroomstoten
- 🚦 laserstralen
- beknelling

Om veiligheidsredenen mogen daarom uitsluitend gekwalificeerde personen gevaarlijke machines in gebruik nemen. Onbevoegde personen mogen niet in staat zijn gevaarlijke machines in bedrijf te stellen.

Een mogelijkheid om de machine ongeacht de bevoegde identificatiemedia te kunnen uitschakelen, verhoogt de veiligheid in het bedrijf nog verder.

GEVAAR

Gevaar van letsel door verkeerde programmering

Het SREL3-ADV-systeem is niet geschikt als enige uitschakelvoorziening. Een via de controller geregelde beveiliging mag nooit de enige mogelijkheid zijn om een machine uit te schakelen!

- 1. Gebruik het SREL3-ADV-systeem alleen als extra voorziening voor het uitschakelen, niet als enige.
- 2. Gebruik de aangestuurde beveiliging alleen in serie geschakeld met de nood-uit-schakelaar van de machine.

Met het SREL3-ADV-systeem bestaat een effectieve bescherming tegen inbedrijfstelling van gevaarlijke machines door onbevoegde personen die daarbij gewond zouden kunnen raken. De lezer wordt aangebracht op de te beveiligen machine en met de controller verbonden. Pas nadat een bevoegd identificatiemedium bij de lezer is opgehouden, schakelt het relais in de controller en geeft zo via een beveiliging de stroomverzorging van de machine vrij. Nu pas kan de machine worden ingeschakeld met de veiligheidsschakelaar. Voor de montage van de lezer bestaan er twee mogelijkheden:

 de lezer wordt geïnstalleerd in de behuizing van de machine. Deze variant is optisch onopvallend geïntegreerd en biedt afhankelijk van de betreffende behuizing een zeer goede bescherming tegen weersinvloeden, vuil, vloeistof en mechanische impact. de lezer wordt geïnstalleerd op of naast de behuizing van de machine. Deze variant is naar buiten goed zichtbaar en zorgt dat de gebruiker zijn of haar identificatiemedium eenvoudig kan plaatsen. In tegenstelling tot de montage in een (metalen) behuizing is de reikwijdte van de lezer verbeterd. Met de beschermende behuizing (SREL2.COVER1) is bescherming tegen weersinvloeden, vuil, vloeistof en lichte mechanische impact gegarandeerd.

Doordat de communicatie van de lezer met de controller en de LSM beveiligd is, kan niemand gegevens manipuleren. Zodra de gegevens de controller bereiken, worden ze door de controller beoordeeld. Bij een bestaand virtueel netwerk en verbinding met de LSM (Ethernet) wordt actuele informatie door het identificatiemedium opgeroepen, of anders wordt de laatste intern bewaarde status gebruikt. Afhankelijk van het resultaat van de beoordeling initieert de controller de bijbehorende actie, bijvoorbeeld het schakelen van een relais.

De machine kan alleen in gebruik worden genomen, wanneer een identificatiemedium bij de lezer wordt gebruikt. Via de passagelijst (alleen voor .ZK-variant) kan in geval van schade precies getraceerd worden, wie de machine het laatst heeft bediend om passende maatregelen te kunnen nemen.

De stroomverzorging van de controller kan met een externe voedingseenheid, of via de netwerkleiding gebeuren. De lezer kan door de controller van stroom worden voorzien. Mocht het spanningsverlies te groot zijn, dan kan de lezer ook gevoed worden met een externe voedingseenheid (zie *Externe spanningsverzorging* [\bullet 63]).

Voor de bedrading, zie Aansluiting van één of meerdere lezers [> 62].

8.4.4.6 Inrit parkeergarage

De inrit van een parkeergarage is als situatie vergelijkbaar met de slagboom op een inrit (zie *Slagboom* [> 46]), want hier komen alle personen voorbij die van buiten in de parkeergarage willen. Tegelijkertijd beschikt een deel van deze personen niet over een identificatiemedium, bijvoorbeeld zakelijke klanten. Bovendien is de buitenzijde blootgesteld aan weersinvloeden, vandalisme en sabotage. Het voornaamste verschil is dat dit punt bijvoorbeeld met een rolluik beveiligd kan worden om te verhinderen dat onbevoegden te voet naar binnen kunnen.

Het interieur van de parkeergarage kan dus beschouwd worden als een beveiligde zone.

Met het SREL3-ADV-systeem is een comfortabele regeling voor de parkeergarage realiseerbaar. Net als bij alle andere toepassingen wordt de controller gemonteerd in een beveiligde zone, bijvoorbeeld in de technische ruimte. Tegelijkertijd is een lezer nodig in de buurt van de inrit voor het rolluik:

- de lezer wordt in een beschikbare behuizing op een passende positie aangebracht, bijvoorbeeld bij de bestaande intercom. Deze variant is optisch onopvallend geïntegreerd en biedt een zeer goede bescherming tegen weersinvloeden, vandalisme en sabotage.
- de lezer wordt geïnstalleerd aan de muur. Deze variant is naar buiten goed zichtbaar en zorgt dat de gebruiker zijn of haar identificatiemedium eenvoudig kan plaatsen. In tegenstelling tot de montage in een aanwezige behuizing is de reikwijdte van de lezer verbeterd. Met de beschermende behuizing (SREL2.COVER1) is bescherming tegen weersinvloeden, vandalisme en sabotage gegarandeerd.

De gebruiker kan vanuit de auto het identificatiemedium gebruiken om de autorisatie te laten controleren. Mocht de gebruiker geen identificatiemedium bezitten, maar wel verwacht worden, dan kan hij of zij zich (bijvoorbeeld via een intercom) toch aanmelden. Een andere persoon die zich bevindt in de beveiligde zone kan de gebruiker dan met een druk op de toets toch binnenlaten. Deze toets kan zich bijvoorbeeld bij een portier bevinden, die externe klanten alleen binnen de kantoortijden binnenlaat, terwijl gebruikers met een identificatiemedium te allen tijde doorgelaten worden. Gebruikers die de parkeergarage willen verlaten, bevinden zich in de beveiligde zone. Een hernieuwde controle van de autorisatie voor de deur kan dus achterwege blijven. Daarom is voor een hoger gebruiksgemak een extra toets parallel met een andere toets (bij de portier) een goede optie. Deze wordt aangebracht in de buurt van de uitrit in de beveiligde zone.

Doordat de communicatie van de lezer met de controller en de LSM beveiligd is, kan niemand gegevens manipuleren. Zodra de gegevens de controller bereiken, worden ze door de controller beoordeeld. Bij een bestaand virtueel netwerk en verbinding met de LSM (Ethernet) wordt actuele informatie door het identificatiemedium opgeroepen, of anders wordt de laatste intern bewaarde status gebruikt. Afhankelijk van het resultaat van de beoordeling initieert de controller de bijbehorende actie, bijvoorbeeld het schakelen van een relais.

Indien een virtueel netwerk wordt gebruikt, biedt zich een toepassing als Gateway aan. De inrit van de parkeergarage is één van de sluitelementen die intensief wordt gebruikt. Dit betekent dat elk identificatiemedium dat hier wordt gebruikt, via de lezer en dus ook via de controller wordt vergeleken met de LSM-database. Wijzigingen van rechten, te blokkeren id's en tijdbudgets worden op die manier efficiënt beheerd.

De stroomverzorging van de controller kan met een externe voedingseenheid, of via de netwerkleiding gebeuren. De lezer kan door de controller van stroom worden voorzien. Mocht het spanningsverlies te groot zijn, dan kan de lezer ook gevoed worden met een externe voedingseenheid (zie *Externe spanningsverzorging* [\bullet 63]).

LET OP

Manipulatie van onbeschermde elektrische verbindingen

Onbeschermde elektrische verbindingen kunnen door kortsluiting of op een andere manier gemanipuleerd worden.

- 1. Leg elektrische verbindingen van toetsen naar de controller dan ook enkel aan in beveiligde zones.
- 2. Leg elektrische verbindingen van de controller voor de beveiliging of naar te regelen apparatuur alleen aan in beveiligde zones.

Voor de bedrading, zie *Aansluiting van één of meerdere lezers* [> 62] en *Aansluiting van één of meerdere tasters* [> 65].

8.4.5 Bedrading

8.4.5.1 Aansluiting van één of meerdere lezers

OPMERKING

Wanneer u maar één of twee kaartlezers gebruikt, kunt u deze naar keuze aansluiten op de eerste, tweede of derde aansluiting. Wanneer u Smart-Output-modules wilt aansluiten, kunt u hiervoor alleen de aansluiting van de derde lezer gebruiken.

Spanningsverzorging door controller

De lezers (max. drie lezers per controller) worden op de hiervoor bestemde punten aangesloten op de controller. Dit soort bedrading is de eenvoudigste verbinding tussen lezers en controllers. De controller leidt de spanningsverzorging door naar de aansluitingen voor de lezers, die hierdoor gebruikt kunnen worden zonder verdere voedingseenheid.

LET OP

Functiestoringen door spanningsverlies

Op de leidingen tussen de controller en de lezers ontstaat spanningsverlies. Wanneer het spanningsverlies te groot is, is de spanning bij de lezer niet meer voldoende voor een betrouwbaar gebruik.

- Let op de specificaties voor de kabellengte (zie *Eigenschappen* [▶ 174]).
- 2. Gebruik bij twijfel een externe voedingseenheid om de lezers van stroom te voorzien (zie *Externe spanningsverzorging* [▶ 63]).

Gebruik deze configuratie om te testen of de betreffende componenten naar behoren functioneren.

SmartRelais 3-systeem (Manual)

Externe spanningsverzorging

De lezers (max. drie lezers per controller) worden op de hiervoor bestemde punten aangesloten op de controller. De spanningsverzorging voor de lezers wordt geleverd met een eigen voedingseenheid. Voor de gegevensoverdracht tussen de controller en de lezers is een gemeenschappelijk referentiepotentiaal nodig. De massa's van de voedingseenheden, de spanningsverzorging en de controller moeten daarom met elkaar verbonden zijn. Het gebruik van een externe voedingseenheid voorkomt eventuele problemen met spanningsverlies tussen de controllers en de lezers.

Optie 1: Gebruik van een aardverbinding

Deze configuratie maakt gebruik van één van de twee beschikbare aardverbindingen op de lezer. Aangezien de twee aardverbindingen elektrisch met elkaar zijn verbonden, speelt het geen rol aan welke van de twee de aarding wordt aangesloten. Het is voldoende één aardverbinding op de controler te gebruiken. Hiermee is het gemeenschappelijke referentiepotentiaal verzorgd en kan de gegevensoverdracht plaatsvinden. Aangezien de aardverbindingen op de controller elektrisch met elkaar zijn verbonden, speelt het geen rol aan welke de aarding wordt aangesloten (voor details zie *Controller [> 17]*). De illustratie geeft alle mogelijke aardverbindingen weer tussen de lezer en de controller. Het is echter voldoende wanneer één aardverbinding van de controller verbonden is met de massa van de lezer.

Optie 2: Gebruik van beide aardverbindingen

Deze configuratie maakt gebruik van beide beschikbare aardverbindingen op de lezer. De massa van de voedingseenheid wordt aangesloten op een aardverbinding en de massa van de controller op de andere aardverbinding. Hiermee is het gemeenschappelijke referentiepotentiaal verzorgd en kan de gegevensoverdracht plaatsvinden. Aangezien de aardverbindingen op de controller elektrisch met elkaar zijn verbonden, speelt het geen rol aan welke de aarding wordt aangesloten (voor details zie *Controller* [> 17]). Het volstaat wanneer één aardverbinding van de controller verbonden is met de massa van de lezer.

Deze configuratie biedt zich aan als het aantal aftakkingen van de bedrading gereduceerd moet worden. De oplossing functioneert bij beide configuraties precies gelijk.

8.4.5.2 Aansluiting van één of meerdere tasters

Tasters worden in principe altijd aangesloten op de digitale ingangen van de controller. Per controller kunnen maximaal drie tasters worden aangesloten (zie *Controller [• 17]*). De functie van de taster kan in de LSM geconfigureerd worden. De ingangen zijn in ongeschakelde toestand low, dus logisch 0. Ze worden als high herkend wanneer de toegevoerde spanning een bepaalde drempelwaarde overschrijdt (zie *Eigenschappen [• 174]*). De overschrijding van deze drempelwaarde is realiseerbaar (als afgebeeld) door een verbinding met de bedrijfsspanning van de controller. Daarnaast kan ook een willekeurige spanning binnen de specificaties (zie *Eigenschappen [+ 174]*) met een gemeenschappelijke referentiepotentiaal naar de controller worden gebruikt.

Optie 1: Gebruik van de I+-aansluiting

Voor vereenvoudiging van het gebruik van tasters staat naast de digitale ingangen een uitgang ter beschikking, die de bedrijfsspanning – $1 V_{DC}$ levert. De uitgang kan worden gebruikt om de ingangen op een hogere spanning dan de drempelwaarde te brengen en daarmee op logisch 1 te schakelen.

Optie 2: Gebruik van V_{IN}

Wanneer I+ niet gebruikt mag worden, kan een andere spanning met gemeenschappelijke referentiepotentiaal (identieke massa) naar de controller worden gebruikt, in dit geval van de voedingseenheid. Deze mogelijkheid is aan te bevelen wanneer een voedingseenheid en een taster weliswaar dicht bij elkaar liggen, maar op grote afstand van de controller. In dit geval kan het aanleggen van een extra leiding (namelijk van I+) achterwege blijven.

8.4.5.3 Aansluiting van één of meerdere SmartOutput-modules

Voor SmartOutput-modules is een verzorgingsspanning nodig die kan afwijken van de verzorgingsspanning van de controller. Daarom wordt het gebruik van een eigen voedingseenheid aanbevolen. SmartOutputmodules worden parallel aan de bus aangesloten (A, B). De bus wordt op de controller in plaats van een derde lezer aangesloten. Voor de correcte aansturing van de SmartOutput-module is het nodig dat op elke SmartOutput-module een adres wordt ingesteld (zie manual SmartOutput-module).

OPMERKING

Wanneer de voedingseenheid van de controller 12 V_{DC} en voldoende stroom levert, dan kan de voedingseenheid voor de SmartOutput-module ook achterwege blijven en in plaats hiervan de spanningsverzorging van de controller aangeboord worden. In dit geval wordt de massa van de SmartOutputmodule verbonden met de massa van de voedingseenheid van de controller en V_{IN} van de SmartOutput-module met de 12 V_{DC} van de voedingseenheid.

Adres van de module instellen

Elke aangesloten module wordt via zijn adres aangesproken. Dit adres wordt ingesteld met de adresregelaar. Als u een SmartOutput-module op een SmartRelais 3 aansluit, stelt u de volgende adressen in:

Module	Adres
Module 1	0 (basisinstelling af-fabriek)
Module 2	1
Module 3	2
Module 4	3
Module 5	4
Module 6	5
Module 7	6
Module 8	7
Module 9	8
Module 10	9
Module 11	А
Module 12	В
Module 13	С
Module 14	D
Module 15	E

- 1. Druk de zijkanten van de transparante afdekking samen.
- 2. Neem de transparante afdekking weg.
- 3. Stel met een schroevendraaier het adres in volgens de tabel.
- 4. Plaats de transparante afdekking weer terug.
- 8.4.5.4 Gebruik van de seriële interface

De digitale uitgangen die worden gebruikt voor de seriële interface zijn Open-Drain-aansluitingen. Dit betekent dat voor het gebruik als seriële interface een pull-up-weerstand van de dataleidingen en 3 - 24 V_{DC} nodig is. Hiervoor kan de aansluiting O+ worden gebruikt. Een waarde van 1 k Ω wordt aanbevolen. Voor de gegevensoverdracht moeten bovendien de massa van de controller en de massa van het externe systeem worden verbonden. Gedetailleerde informatie en specificaties zijn verkrijgbaar bij Support (zie Hulp en contact). Eventueel zijn de benodigde pull-up-weerstanden al in uw externe systeem geïntegreerd. Bij twijfel kunt u informatie vragen aan de fabrikant van uw externe systeem.

Wiegand 26-bit en 33-bit

De controller kan communiceren met systemen die één van de Wiegandprotocollen gebruiken. Na het herkennen van een bevoegd identificatiemedium, worden de gegevens via de seriële interface doorgegeven aan het externe systeem. Hiervoor moet de bedrading van de controller als volgt aangesloten worden.

Primion, Siemens Cerpass, Kaba Benzing, Gantner Legic en Isgus

De controller kan communiceren met systemen die één van deze protocollen gebruiken. Na het herkennen van een bevoegd identificatiemedium, worden de gegevens via de seriële interface doorgegeven aan het externe systeem. Hiervoor moet de bedrading van de controller als volgt aangesloten worden.

Specificatie van de seriële interfaces met CLS

Uw SmartRelais kan niet alleen identificatiemedia lezen en een relais schakelen, maar ook puur dienen als lezer voor identificatiemediumgegevens. Deze gegevens zijn:

- klant-ID of sluitsysteem-ID
- transponder-ID

De uitgelezen identificatiemediumgegevens worden daarna via een seriële interface in verschillende gegevensformaten doorgegeven aan externe systemen. Voorbeelden voor dergelijke externe systemen:

- tijdregistratiesystemen
- kantineafrekeningssystemen

Op deze manier kunt u met slechts één identificatiemedium alle relevante systemen bedienen, zoals:

- gebouwautomatisering
- toegangscontrole
- 👪 tijdregistratie
- kantineafrekening

De seriële interface ondersteunt verschillende signaal- en gegevensformaten voor de diverse merken:

- Wiegand26 (standaardformaat)
- Wiegand33 (voor PRIMION-verbindingen)
- OMRON Primion
- OMRON Siemens-CerPass
- OMRON Gantner-Legic
- 👪 OMRON Dormakaba
- OMRON Isgus

Wiegand26 (standaardformaat)

Signaalbeschrijving

Een Wiegand-interface gebruikt de volgende gestandaardiseerde signalen:

Signaal	Betekenis	Toelich- ting	Aanslui- ting SREL.ADV	Aanslui- ting SREL3 ADV	Aanslui- ting SREL AX Classic
DO	Data 0		F1 ('D0')	01	Uitgang 1
DI	Data 1		F2 ('D1')	02	Uitgang 2
CLS	Card Loa- ding Signal	Optioneel configu- reerbaar	F3 ('led/ zoemer/in- gang1')	03	Niet be- schikbaar

Alle outputs zijn open-drain. Voor de signaalkabels moet een pull-up weerstand (typ. 1 k Ω tot 10 k Ω) en de positieve voeding (3 V_{DC} tot 24 V_{DC}) worden voorzien.

De signalen zijn 'Active Low'.

\$

Timing van de signalen

Tijd	Beschrij- ving	Min.	Туре	max.	Eenheid
t _{CLS-}	Tijd tussen activering van het CLS-sig- naal en eerste ge- gevensbit	8	10	12	ms
t _{dL}	Pulsbreed- te databit	80	100	120	μs
t _{pl}	Tijd tussen twee bits (idle time)	800	900	1000	hz
t _{pP}	Signaalpe- riode (data rate peri- od)	900	1000	1100	hz

Tijd	Beschrij- ving	Min.	Туре	max.	Eenheid
t _{CLS+}	Tijd tussen laatste ge- gevensbit en deacti- vering van het CLS- signaal	8	10	12	ms

Gegevensformaat (Wiegand 26-bit)

Dit is de standaard Wiegand-interface. De facilitycode is verkort tot 8 bits.

Bitnummer	Betekenis
Bit 1	Pariteitsbit (even) via bits 2 t/m 13
Bits 2 t/m 9	Facility code (0 tot 255). Bit 2 is MSB.
Bits 10 t/m 25	User-ID-nummer (0 t/m 65.535). Bit 10 is MSB.
Bit 26	Pariteitsbit (oneven) via bits 14 t/m 25.

Wiegand33 (voor PRIMION-verbindingen)

Signaalbeschrijving

Een Wiegand-interface gebruikt de volgende gestandaardiseerde signalen:

Signaal	Betekenis	Toelich- ting	Aanslui- ting SREL.ADV	Aanslui- ting SREL3 ADV	Aanslui- ting SREL AX Classic
DO	Data 0		F1 ('D0')	01	Uitgang 1
וס	Data 1		F2 ('D1')	02	Uitgang 2
CLS	Card Loa- ding Signal	Optioneel configu- reerbaar	F3 ('led/ zoemer/in- gang1')	О3	Niet be- schikbaar

Alle outputs zijn open-drain. Voor de signaalkabels moet een pull-up weerstand (typ. 1 k Ω tot 10 k Ω) en de positieve voeding (3 V_{DC} tot 24 V_{DC}) worden voorzien.

De signalen zijn 'Active Low'.

\$

Timing van de signalen

Tijd	Beschrij- ving	Min.	Туре	max.	Eenheid
t _{cls-}	Tijd tussen activering van het CLS-sig- naal en eerste ge- gevensbit	8	10	12	ms
t _{dL}	Pulsbreed- te databit	80	100	120	μs
t _{pl}	Tijd tussen twee bits (idle time)	800	900	1000	hz
t _{pP}	Signaalpe- riode (data rate peri- od)	900	1000	1100	hz

Tijd	Beschrij- ving	Min.	Туре	max.	Eenheid
t _{CLS+}	Tijd tussen laatste ge- gevensbit en deacti- vering van het CLS- signaal	8	10	12	ms

Gegevensformaat (Wiegand 33-bit)

Dit is een aangepast Wiegand-formaat. Het bevat de volledige 16-bits facility-code (of sluitsysteem-ID).

Bitnummer	Betekenis
Bits 1 t/m 16	Facility code (0 t/m 65.535). Bit 1 is MSB.
Bits 17 t/m 32	User-ID-nummer (0 t/m 65.535). Bit 17 is MSB.
Bit 33	Pariteitsbit (oneven) via bits 1 t/m 32.

OMRON Primion

Signaalbeschrijving

Een OMRON-interface gebruikt de volgende gestandaardiseerde signalen:

Signaal	Betekenis	Toelich- ting	Aanslui- ting SREL.ADV	Aanslui- ting SREL3 ADV	Aanslui- ting SREL AX Classic
DATA	Data		F1 ('D0')	01	Uitgang 1
CLK	Clock		F2 ('D1')	02	Uitgang 2
CLS	Card Loa- ding Signal	Optioneel configu- reerbaar	F3 ('led/ zoemer/in- gang1')	03	Niet be- schikbaar

Alle outputs zijn open-drain. Voor de signaalkabels moet een pull-up weerstand (typ. 1 k Ω tot 10 k Ω) en de positieve voeding (3 V_{DC} tot 24 V_{DC}) worden voorzien.

De signalen zijn 'Active Low'. De gegevens zijn geldig vanaf de dalende CLK-flank.

Timing van de signalen

Tijd	Beschrij- ving	Min.	Туре	max.	Eenheid
t _{cls-}	Tijd tussen activering van het CLS-sig- naal en eerste ge- gevensbit	8	12	20	ms
t _{clk}	Taktperio- de (clock period)	290	320	350	hz
t _s	Insteltijd voor data- bit	50	100	150	hz
t _{co}	Takt op 'low'-ni- veau (clock low)	50	100	150	hz

Tijd	Beschrij- ving	Min.	Туре	max.	Eenheid
t _{CLS+}	Tijd tussen laatste ge- gevensbit en deacti- vering van het CLS- signaal	8	12	20	ms

Gegevensformaat (OMRON Primion)

Hierna bestaat elk bericht uit een reeks letters ('characters').

Elke 'character' wordt weergegeven door een reeks van 5 bits (BCD-code+pariteit):

Bit 1 (LSB)	Bit 2	Bit 3	Bit 4 (MSB)	Bit 5 (oneven pariteitsbit via bits 1 t/m 4)
-------------	-------	-------	-------------	--

Gegevensstructuur van een bericht:

S AAAAA BBBBB E

Betekenis:

В	User-ID-nummer (0 t/m 99.999)
A	Facility code (0 t/m 99.999)
S	Start-character (Hex B)

Voorbeeld:

Facility code: 563

User-ID: 3.551

S	А	А	А	А	А	В	В	В	В	В	E
Start - char ac- ter	Facility code			User-ID					End- char ac- ter		
1101 0	000 01	000 01	1010 1	0110 1	1100 1	000 01	1100 1	1010 1	1010 1	100 00	11111
В	0	0	5	6	3	0	3	5	5	1	F

OMRON Siemens-CerPass

Signaalbeschrijving

Een OMRON-interface gebruikt de volgende gestandaardiseerde signalen:

Signaal	Betekenis	Toelich- ting	Aanslui- ting SREL.ADV	Aanslui- ting SREL3 ADV	Aanslui- ting SREL AX Classic
DATA	Data		F1 ('D0')	01	Uitgang 1
CLK	Clock		F2 ('D1')	02	Uitgang 2
CLS	Card Loa- ding Signal	Optioneel configu- reerbaar	F3 ('led/ zoemer/in- gang1')	О3	Niet be- schikbaar

Alle outputs zijn open-drain. Voor de signaalkabels moet een pull-up weerstand (typ. 1 k Ω tot 10 k Ω) en de positieve voeding (3 V_{DC} tot 24 V_{DC}) worden voorzien.

De signalen zijn 'Active Low'. De gegevens zijn geldig vanaf de dalende CLK-flank.

Timing van de signalen

SmartRelais 3-systeem (Manual)

Tijd	Beschrij- ving	Min.	Туре	max.	Eenheid
t _{cls-}	Tijd tussen activering van het CLS-sig- naal en eerste ge- gevensbit	8	12	20	ms
t _{clk}	Taktperio- de (clock period)	290	320	350	hz
t _s	Insteltijd voor data- bit	50	100	150	hz
t _{co}	Takt op 'low'-ni- veau (clock low)	50	100	150	ha
t _{cls+}	Tijd tussen laatste ge- gevensbit en deacti- vering van het CLS- signaal	8	12	20	ms

Gegevensformaat (OMRON Siemens-CerPass)

Hierna bestaat elk bericht uit een reeks letters ('characters').

Elke 'character' wordt weergegeven door een reeks van 5 bits (BCD-code+pariteit):

Bit1(LSB)	Bit 2	Bit 3	Bit 4 (MSB)	Bit 5 (oneven pariteitsbit via bits
				101114)

Gegevensstructuur van een bericht:

<10 leading zero bits> S AAAAA BBBBB E L

Betekenis:

S	Start-character (Hex B)

A	Facility code (0 t/m 99.999)
В	User-ID-nummer (0 t/m 99.999)
E	End-character (Hex F)
L	Lengtepariteitscontroleteken (over alle doorgegeven characters SE)

OMRON Gantner-Legic

Signaalbeschrijving

Een OMRON-interface gebruikt de volgende gestandaardiseerde signalen:

Signaal	Betekenis	Toelich- ting	Aanslui- ting SREL.ADV	Aanslui- ting SREL3 ADV	Aanslui- ting SREL AX Classic
DATA	Data		F1 ('D0')	01	Uitgang 1
CLK	Clock		F2 ('D1')	02	Uitgang 2
CLS	Card Loa- ding Signal	Optioneel configu- reerbaar	F3 ('led/ zoemer/in- gang1')	O3	Niet be- schikbaar

Alle outputs zijn open-drain. Voor de signaalkabels moet een pull-up weerstand (typ. 1 k Ω tot 10 k Ω) en de positieve voeding (3 V_{DC} tot 24 V_{DC}) worden voorzien.

De signalen zijn 'Active Low'. De gegevens zijn geldig vanaf de dalende CLK-flank.

Timing van de signalen

Tijd	Beschrij- ving	Min.	Туре	max.	Eenheid
t _{cLS-}	Tijd tussen activering van het CLS-sig- naal en eerste ge- gevensbit	8	12	20	ms
t _{clk}	Taktperio- de (clock period)	290	320	350	ha
t _s	Insteltijd voor data- bit	50	100	150	hz
t _{co}	Takt op 'low'-ni- veau (clock low)	50	100	150	ha

Tijd	Beschrij- ving	Min.	Туре	max.	Eenheid
t _{CLS+}	Tijd tussen laatste ge- gevensbit en deacti- vering van het CLS- signaal	8	12	20	ms

Gegevensformaat (OMRON Gantner-Legic)

Hierna bestaat elk bericht uit een reeks letters ('characters').

Elke 'character' wordt weergegeven door een reeks van 5 bits (BCD-code+pariteit):

Bit 1 (LSB)	Bit 2	Bit 3	Bit 4 (MSB)	Bit 5 (oneven pariteitsbit via bits 1 t/m 4)
-------------	-------	-------	-------------	--

Gegevensstructuur van een bericht:

<15 leading zero bits> S CCCCCCC AAAA M N BBBBBB E L <15 trailing zero bits>

Betekenis:

S	Start-character (Hex B)
C	Constant (Hex 1A210001)
А	Facility code (0 t/m 9.999)
Μ	Separator (Hex 0)
Ν	Separator (Hex 1)
В	User-ID-nummer (0 t/m 999.999)
E	End-character (Hex F)
L	Lengtepariteitscontroleteken (over alle doorgegeven characters SE)

OMRON Kaba-Benzing

Signaalbeschrijving

Een OMRON-interface gebruikt de volgende gestandaardiseerde signalen:

Signaal	Betekenis	Toelich- ting	Aanslui- ting SREL.ADV	Aanslui- ting SREL3 ADV	Aanslui- ting SREL AX Classic
DATA	Data		F1 ('D0')	01	Uitgang 1
CLK	Clock		F2 ('D1')	02	Uitgang 2
CLS	Card Loa- ding Signal	Optioneel configu- reerbaar	F3 ('led/ zoemer/in- gang1')	O3	Niet be- schikbaar

Alle outputs zijn open-drain. Voor de signaalkabels moet een pull-up weerstand (typ. 1 k Ω tot 10 k Ω) en de positieve voeding (3 V_{DC} tot 24 V_{DC}) worden voorzien.

De signalen zijn 'Active Low'. De gegevens zijn geldig vanaf de dalende CLK-flank.

Timing van de signalen

SmartRelais 3-systeem (Manual)

Tijd	Beschrij- ving	Min.	Туре	max.	Eenheid
t _{cls-}	Tijd tussen activering van het CLS-sig- naal en eerste ge- gevensbit	8	12	20	ms
t _{clk}	Taktperio- de (clock period)	290	320	350	ha
t _s	Insteltijd voor data- bit	50	100	150	hz
t _{co}	Takt op 'low'-ni- veau (clock low)	50	100	150	ha
t _{cls+}	Tijd tussen laatste ge- gevensbit en deacti- vering van het CLS- signaal	8	12	20	ms

Gegevensformaat (OMRON Kaba-Benzing)

Hierna bestaat elk bericht uit een reeks letters ('characters').

Elke 'character' wordt weergegeven door een reeks van 5 bits (BCD-code+pariteit):

Bit 1 (LSB)	Bit 2	Bit 3	Bit 4 (MSB)	Bit 5 (oneven pariteitsbit via bits
				101114)

Gegevensstructuur van een bericht:

<15 leading zero bits> S CCCCCCC AAAAAAAA BBBBBB E L <15 laging zero bits>

Betekenis:

S

С	Constant (Hex 00000000)
Α	Facility code (0 t/m 99.999.999)
В	User-ID-nummer (0 t/m 999.999)
E	End-character (Hex F)
L	Lengtepariteitscontroleteken (over alle doorgegeven characters SE)

OMRON Isgus

Signaalbeschrijving

Een OMRON-interface gebruikt de volgende gestandaardiseerde signalen:

Signaal	Betekenis	Toelich- ting	Aanslui- ting SREL.ADV	Aanslui- ting SREL3 ADV	Aanslui- ting SREL AX Classic
DATA	Data		F1 ('D0')	01	Uitgang 1
CLK	Clock		F2 ('D1')	02	Uitgang 2
CLS	Card Loa- ding Signal	Optioneel configu- reerbaar	F3 ('led/ zoemer/in- gang1')	О3	Niet be- schikbaar

Alle outputs zijn open-drain. Voor de signaalkabels moet een pull-up weerstand (typ. 1 k Ω tot 10 k Ω) en de positieve voeding (3 V_{DC} tot 24 V_{DC}) worden voorzien.

De signalen zijn 'Active Low'. De gegevens zijn geldig vanaf de dalende CLK-flank.

Timing van de signalen

Tijd	Beschrij- ving	Min.	Туре	max.	Eenheid
t _{cls-}	Tijd tussen activering van het CLS-sig- naal en eerste ge- gevensbit	8	12	20	ms
t _{clk}	Taktperio- de (clock period)	290	320	350	ha
t _s	Insteltijd voor data- bit	50	100	150	hz
t _{co}	Takt op 'low'-ni- veau (clock low)	50	100	150	hz

Tijd	Beschrij- ving	Min.	Туре	max.	Eenheid
t _{cls+}	Tijd tussen laatste ge- gevensbit en deacti- vering van het CLS- signaal	8	12	20	ms

Gegevensformaat (OMRON lsgus)

Hierna bestaat elk bericht uit een reeks letters ('characters').

Elke 'character' wordt weergegeven door een reeks van 5 bits (BCD-code+pariteit):

Bit 1 (LSB)	Bit 2	Bit 3	Bit 4 (MSB)	Bit 5 (oneven pariteitsbit via bits 1 t/m 4)
-------------	-------	-------	-------------	--

Gegevensstructuur van een bericht:

S BBBB M AAAA E L

Betekenis:

S	Start-character (Hex B)
В	User-ID-nummer (0 t/m 9.999)
Μ	5e cijfer van het user-ID-nummer
А	Facility code (0 t/m 9.999)
E	End-character (Hex F)
L	Lengtepariteitscontroleteken (over alle doorgegeven characters XOR(SE))

8.4.5.5 Bedrading in de lift

Liftkooien worden via de liftkabels verbonden met de buitenomgeving. Door het type liftkabel is het aantal beschikbare leidingen beperkt. U kunt vrije leidingen besparen wanneer u kiest voor een configuratie met weinig leidingen.

LET OP

Functiestoringen door spanningsverlies

Spanningsverlies op de liftkabel door fysieke oorzaken kan bij spanningsverzorging van buiten de liftkooi tot een te lage spanning leiden.

- 1. Houd ook rekening met de lengte van de leiding.
- 2. Kies eventueel voor een variant met spanningsverzorging in de kooi (zie *Gemeenschappelijke aarding met spanningsverzorging* [• 89] und *Gemeenschappelijke aarding met SREL3-componenten* [• 90]).
- 3. Vergroot de diameter van de leiding door de leidingen in de liftkabel te bundelen.

Gemeenschappelijke aarding met spanningsverzorging

Deze bedrading is erop gebaseerd dat de kooi al met een leiding voor de spanningsverzorging is verbonden met de buitenomgeving. In de kooi wordt de spanning met een spanningsomvormer veranderd en beschikbaar gemaakt voor de lezer en de SmartOutput-modules. Tegelijkertijd wordt de massa van de spanningsverzorging voor de liftelektronica als gemeenschappelijk referentiepotentiaal gebruikt voor de gegevensoverdracht tussen lezer, SmartOutput-module en controller.

GEVAAR

Gevaar van een stroomstoot door netspanning

Door de verbinding van de ongevaarlijke massa (extra lage spanning) met een leiding die netspanning voert, kan een stroomstoot ontstaan.

- 1. Gebruik alleen leidingen met extra laagspanningspotentiaal (< 42 V) als gemeenschappelijke aarding!
- 2. Beveilig de leidingen die onder spanning staan tegen onopzettelijke aanraking!

Gemeenschappelijke aarding met SREL3-componenten

Deze bedrading is erop gebaseerd dat de kooi al met een leiding voor de spanningsverzorging is verbonden met de buitenomgeving. In de kooi wordt de spanning met een spanningsomvormer veranderd en beschikbaar gemaakt voor de lezer en de SmartOutput-modules. In tegenstelling tot de variant met gemeenschappelijke aarding (zie *Gemeenschappelijke aarding met spanningsverzorging [• 89]*) wordt hierbij niet de aardleiding gebruikt van de spanningsverzorging, maar een afzonderlijke leiding als gemeenschappelijke referentiepotentiaal tussen controller, lezer en SmartOutput-modules. Naar gelang de uitvoering van de spanningsomvormer kan het SREL3-ADV-systeem zo losgekoppeld worden van de liftelektronica.

Spanningsverzorging door liftkabel

Wanneer de kooi niet beschikt over een geschikte spanningsverzorging (te hoge spanning of niet voldoende reserve capaciteit), of om andere redenen niet geschikt is om het SREL3-ADV-systeem te verzorgen, dan moet de spanningsverzorging geregeld worden via de liftkabel.

Optie 1: Aanboren van de spanningsverzorging voor de controller

Deze configuratie maakt een afzonderlijke voedingseenheid voor lezers en SmartOutput-module overbodig. De dataleidingen worden volgens de beschrijving in de hoofdstukken over de lezer (zie *Aansluiting van één of meerdere lezers [+ 62]*) en de SmartOutput-module (zie *Aansluiting van één of meerdere SmartOutput-modules [+ 67]*) aangesloten.

WAARSCHUWING

Overbelasting van de voedingseenheid

De SmartOutput-module en de lezer zijn extra stroomverbruikers. Ze kunnen de voedingseenheid van de controller overbelasten en brand veroorzaken.

Gebruik een voedingseenheid die geclassificeerd is voor de som van de continue stroom van alle aangesloten componenten.

LET OP

Te hoge spanning op de SmartOutput-module

De toelaatbare verzorgingsspanning van de SmartOutput-module wijkt af van de toelaatbare verzorgingsspanning van de lezer of de controller (zie *Eigenschappen* [\rightarrow 174]).

 Maak gebruik van Optie 2 wanneer de verzorgingsspanning van de controller buiten de specificaties van de SmartOutput-module ligt.

Optie 2: Eigen voedingseenheid voor lezer en SmartOutput-module

Deze configuratie vereist een afzonderlijke voedingseenheid voor lezers en SmartOutput-module. De massa van de controller, de voedingseenheden en de lezer/SmartOutput-module moeten met elkaar worden verbonden om een gemeenschappelijk referentiepotentiaal voor de gegevensoverdracht te realiseren.

Spanningsverzorging door controller

Deze bedrading komt alleen in aanmerking wanneer er geen SmartOutputmodules gebruikt mogen worden. De lezer wordt volgens de beschrijving hierboven via de liftkabel aangesloten (zie *Spanningsverzorging door controller* [\bullet 62]).

Door de controller gevoede lezer met SmartOutput-modules

De lezer wordt volgens de beschrijving hierboven aangesloten (zie Spanningsverzorging door controller [> 62]). Tegelijkertijd worden de SmartOutput-modules verzorgd via een voedingseenheid buiten de kooi. De massa van de SmartOutput-module moet worden verbonden met de massa van de controller.

OPMERKING

De voedingseenheid voor de SmartOutput-module kan ook achterwege blijven als de controller via een voedingseenheid met 12 V_{DC} wordt verzorgd. Hiervoor wordt de V_{IN} van de SmartOutput-module niet met een eigen voedingseenheid, maar met de V_{IN} van de controller verbonden (vergelijk *Spanningsverzorging door liftkabel [• 91]*).

WAARSCHUWING

Overbelasting van de voedingseenheid

De SmartOutput-module en de lezer zijn extra stroomverbruikers. Ze kunnen de voedingseenheid van de controller overbelasten en brand veroorzaken.

Gebruik een voedingseenheid die geclassificeerd is voor de som van de continue stroom van alle aangesloten componenten.

8.4.6 Blokschakelbeelden

Alle berekeningen en de bijbehorende aanbevolen kabeltypes betreffen een spanningsverzorging van 12 V.

Stroomloos open sluitelement (failsafe) met brandalarm, sensor en lezer

Het gebruikte sluitelement gaat open, wanneer de stroomtoevoer onderbroken wordt. Gewoonlijk zijn de contacten van het brandalarm met elkaar verbonden, net als de relaiscontacten van het SmartRelais. De stroom kan van de voedingseenheid door het sluitelement, de contacten van het brandalarm en de relaiscontacten van het SmartRelais stromen. Het sluitelement blijft gesloten.

Wanneer het stroomcircuit van het sluitelement onderbroken wordt, gaat het sluitelement open. Mogelijke oorzaken:

- een bevoegd identificatiemedium wordt geactiveerd bij de lezer. Het relaiscontact van het SmartRelais gaat open.
- De sensor wordt geactiveerd. Het relaiscontact van de SmartRelais gaat open.
- Het brandalarm herkent een brand. De contacten van het brandalarm zijn niet meer verbonden.
- De stroom valt uit (bijvoorbeeld door een brand).

II De SmartRelais wordt op afstand geopend.

Onder de volgende randvoorwaarden kunt u de onderstaande kabeltypes gebruiken. (Gedetailleerde informatie over de bekabeling, zie *Informatie over de bedrading [• 184]*).

Nummer	Randvoorwaarden	Type snoer
1	Snoerlengte voedings- eenheid naar controller ≤ 15 m (15 m heen- en 15 m terugweg)	F-YAY 2x2x0,6
2	Snoerlengte controller naar lezer (resp. con- troller naar sensor) ≤ 15 m (15 m heen- en 15 m terugweg)	CAT5, afgeschermd
3	 Aansluiting rechtstreeks op voedingseenheid Snoerlengte voedingseenheid- sluitelement- brandalarm- controller ≤ 50 m (50 m heen- en 50 m terugweg) Sluitelement voor 9 V_{DC} geschikt tot spanningsverzorging smaximum, maximaal vermogen van het sluitelement ≤ 4,5 W 	F-YAY 2x2x0,6

Stroomloos gesloten sluitelement (failsecure) met sensor en lezer

Het gebruikte sluitelement gaat open, bij stroomtoevoer. Gewoonlijk zijn de relaiscontacten van het SmartRelais niet met elkaar verbonden. De stroom kan vanaf de voedingseenheid niet door de relaiscontacten van het SmartRelais naar het sluitelement stromen. Het sluitelement blijft gesloten.

Wanneer het stroomcircuit van het sluitelement ondergesloten wordt, gaat het sluitelement open. Mogelijke oorzaken:

- een bevoegd identificatiemedium wordt geactiveerd bij de lezer. Het relaiscontact van het SmartRelais gaat dicht.
- De sensor wordt geactiveerd. Het relaiscontact van de SmartRelais gaat dicht.
- De SmartRelais wordt op afstand geopend.

Onder de volgende randvoorwaarden kunt u de onderstaande types snoer gebruiken. (Gedetailleerde informatie over de bekabeling, zie *Informatie over de bedrading* [• 184]).

Nummer	Randvoorwaarden	Type snoer
1	Snoerlengte voedings- eenheid naar controller ≤ 15 m (15 m heen- en 15 m terugweg)	F-YAY 2x2x0,6
2	Snoerlengte controller naar lezer (resp. con- troller naar sensor) ≤ 15 m (15 m heen- en 15 m terugweg)	CAT5, afgeschermd

SmartRelais 3-systeem (Manual)

Nummer	Randvoorwaarden	Type snoer
	 Aansluiting rechtstreeks op voedingseenheid 	
3	 Snoerlengte voedingseenheid- sluitelement- controller ≤ 50 m (50 m heen- en 50 m terugweg) 	F-YAY 2x2x0,6
	 Sluitelement voor 9 V_{DC} geschikt tot spanningsverzorging smaximum, maximaal vermogen van het sluitelement ≤ 4,5 W 	

Lockersysteem met rechtstreekse verkabeling

De locker van het sluitsysteem gaat open wanneer het sluitelement ervan voorzien wordt van voeding. Gewoonlijk zijn de contacten van de SmartOutput-module open en stroomt de stroom niet door de contacten van de SmartOutput-module naar de sluitelementen van de locker. Wanneer het contact bij de SmartOutput-module gesloten wordt, gaat de locker open. Mogelijke oorzaken:

- een bevoegd identificatiemedium wordt geactiveerd bij de lezer. Het relaiscontact van de SmartOutput-module gaat dicht.
- De sensor wordt geactiveerd. Het relaiscontact van de SmartOutputmodule gaat dicht.
- De SmartRelais wordt op afstand geopend.

Onder de volgende randvoorwaarden kunt u de onderstaande types snoer gebruiken. (Gedetailleerde informatie over de bekabeling, zie *Informatie over de bedrading* [• 184]).

Nummer	Randvoorwaarden	Type snoer
1	Snoerlengte voedings- eenheid naar controller ≤ 15 m (15 m heen- en 15 m terugweg)	F-YAY 2x2x0,6
2	Snoerlengte controller naar lezer ≤ 15 m (15 m heen- en 15 m terug- weg)	CAT5, afgeschermd

SmartRelais 3-systeem (Manual)

Nummer	Randvoorwaarden	Type snoer
	Aansluiting rechtstreeks op voedingseenheid	
	 Snoerlengte voedingseenheid- SmartOutput- module ≤ 53 m (53 m heen- en 53 m terugweg) 	
3	■ Totale lengte van het stroompad van de voedingseenheid- K1-K2-[-(1)]-[+(1)] ≤ 66 m	F-YAY 2x2x0,6
	 Sluitelement van het lockersysteem voor 9 V_{DC} geschikt tot spanningsverzorging smaximum, maximaal vermogen van een sluitelement ≤ 4,5 W 	

9. Montage

9.1 Controller

De controller kan horizontaal of verticaal worden gemonteerd. Horizontale montage is eenvoudig en veilig met behulp van de geïntegreerde bevestigingsopeningen (zie *Boorsjablonen* [+ 190]).

LET OP

Nadelige effecten op de ontvangst door storingsbronnen

Dit apparaat communiceert draadloos. Draadloze communicatie kan nadelig beïnvloed worden of uitvallen door metalen oppervlakken en storingsbronnen.

- 1. Monteer het apparaat niet op een metalen oppervlak.
- 2. Houd het apparaat buiten bereik van elektrische en magnetische storingsbronnen.

Onbevoegde toegang

Het relais in de controller kan door onbevoegden worden kortgesloten.

 Monteer de controller met het relais in een omgeving die beveiligd is tegen onbevoegde toegang.

Onbevoegd schakelen van het relais door middel van een magneet

Het relais kan onbedoeld schakelen door sterke magneten in de buurt.

- 1. Monteer de controller met het relais in een omgeving die niet toegankelijk is voor onbevoegden met magneten.
- 2. Of u bedient het relais permanent onder spanning (omgekeerde uitgang en gebruikt NC+COM in plaats van NO+COM).

Functiestoringen door weersinvloeden

De controller is niet beschermd tegen spatwater en andere weersinvloeden.

- Monteer de controller in een omgeving die beschermd is tegen weersinvloeden.
 - 1. Druk het deksel van de behuizing zoals weergegeven in en neem het dan weg.

2. Houd de bodemplaat op de gewenste plaats en teken de boorgaten af.

- 3. Boor de benodigde gaten met een geschikte boor.
- 4. Gebruik geschikte pluggen en schroef de schroeven voor de bodemplaat erin.
- 5. Plaats de bodemplaat zo dat de schroefkoppen door de uitsparingen worden geleid.

6. Verschuif de bodemplaat zodanig dat de schroefkoppen over de groeven worden geschoven.

VOORZICHTIG

Extra bevestiging voor plafondmontage

Het apparaat kan van het plafond vallen.

- Draai de schroeven vast nadat je de bodemplaat erop hebt geschoven.
- 7. Doe het deksel weer terug op de bodemplaat.
- → Montage voltooid.

Desgewenst kunt u de behuizing ook aanpassen:

- ✓ Stroomvoorziening losgekoppeld.
- 1. Druk het geribbelde gedeelte aan de zijkant naar binnen en neem het deksel van de behuizing.

- 2. Controleer de vereiste breedte van de opening van de behuizing. De hoogte van de opening bedraagt ca. 7 mm. Elke verwijderde rib verbreedt de opening met 4 mm.
- 3. Kies een plek waar u de ribben wilt verwijderen.

LET OP

Geen nauwkeurige pasvorm door verwijderde clips

Het deksel van de behuizing wordt door clips op de ribben geplaatst en vastgehouden. Wanneer u deze clips afzaagt of afbreekt, heeft het deksel van de behuizing op dit punt geen houvast meer.

- 1. Verwijder dus geen ribben waarboven zich een clip bevindt.
- 2. Beschadig tijdens het zagen geen clips.
- 4. Zaag de ribben met een geschikte zaag aan beide uiteinden van de gewenste opening door tot aan de bodemplaat.
- 5. Buig de ribben binnen het bereik van de gewenste opening heen en weer totdat ze afbreken.
- └→ De behuizing is voorbereid voor opbouwmontage.

9.2 Lezer

De lezer kan in elke willekeurige positie worden gemonteerd.

LET OP

Nadelige effecten op de ontvangst door storingsbronnen

Dit apparaat communiceert draadloos. Draadloze communicatie kan nadelig beïnvloed worden of uitvallen door metalen oppervlakken en storingsbronnen.

- 1. Monteer het apparaat niet op een metalen oppervlak.
- 2. Houd het apparaat buiten bereik van elektrische en magnetische storingsbronnen.

Functiestoringen door weersinvloeden

De lezer is in de standaarduitvoering niet beschermd tegen spatwater en andere weersinvloeden.

- 1. Wanneer u de lezer wilt gebruiken in een omgeving die niet is beschermd tegen spatwater, maak dan gebruik van de WP-variant.
- 2. Zorg door extra afdichtingen voor een complete bescherming tegen spatwater.

Verkeerde overdracht door niet-afgeschermde bekabeling

Niet-afgeschermde bekabeling is gevoeliger voor storingen.

 Gebruik voor de verbinding met de lezer afgeschermde bekabeling (zie Informatie over de bedrading [> 184] und Blokschakelbeelden [> 97]).

> De volgende illustraties en handelingsinstructies hebben betrekking op de LED-lezer. De montage van de gewone lezer is vergelijkbaar.

- ✓ Sleufschroevendraaier beschikbaar.
- 1. Leg de lezer op het deksel.
- 2. Duw met een schroevendraaier een van de clips naar binnen.

3. Houd de clip ingedrukt en gebruik de schroevendraaier om de bodemplaat omhoog te schuiven.

- → De clip blijft ingedrukt.
- 4. Doe hetzelfde met de andere clip.
- 5. Steek de schroevendraaier in de opening om de bodemplaat uit het deksel te halen.

- → Bodemplaat en deksel zijn los van elkaar.
- 6. Plaats de bodemplaat op de gewenste plek (zie *Montagepositie van de externe lezer vastleggen [• 107]*).
- 7. Sluit de bedrading van de lezer aan (zie Aansluitingen).
- 8. Plaats het deksel weer terug op de bodemplaat.
- \mapsto De lezer is gemonteerd.

9.2.1 Montagepositie van de externe lezer vastleggen

De montagepositie van de externe lezer hangt af van het type gebruikte identificatiemedia.

Actieve identificatiemedia (transponders) hebben in principe een grotere reikwijdte dan passieve identificatiemedia (kaarten).

9.2.1.1 Gebruik van transponders

De reikwijdte transponder naar lezer (leesbereik) bedraagt max. 100 cm.

Met een actieve transponder kunt u zenden door vast materiaal als hout, staal en beton. Hierbij kan de lezer naar keuze binnen of buiten gemonteerd worden.

OPMERKING

De reikwijdte van een transponder kan door omgevingsinvloeden beperkt worden.

Sterk magnetische velden kunnen de reikwijdte verkleinen. Aluminium constructies kunnen de communicatie tussen transponder en lezer blokkeren.

De optie Modus dichtbijgelegen bereik kan in de LSM-sofware worden geactiveerd. Deze optie reduceert de reikwijdte van de B-veld-lezer en verkleint de invloed van eventuele storingsbronnen, wat foutieve aansturing van de transponder voorkomt.

9.2.1.2 Gebruik van kaarten

De reikwijdte kaart naar lezer (leesbereik) bedraagt max. 1,5 cm.

Na de montage van de lezer moet rechtstreeks contact tussen de kaart en de lezer mogelijk zijn.

9.2.2 Behuizing openen

De behuizing is geborgd met twee borgnokken. Deze nokken kunnen met een puntig, plat voorwerp worden ingedrukt en blijven vastgeklikt zolang aan het deksel wordt getrokken. Bij correcte montage van de behuizing bevinden de borgnokken zich aan de onderzijde.

- ✓ SmartHandle-gereedschap, platte schroevendraaier of iets dergelijks.
- 1. Trek continu voorzichtig aan het deksel tijdens de volgende stappen.
2. Druk een van de twee borgnokken met het SmartHandle-gereedschap naar boven.

└→ Borgnok blijft ingedrukt.

3. Druk de tweede borgnok met het SmartHandle-gereedschap naar boven.

└→ Beide borgnokken zijn ingedrukt.

4. Klap het deksel naar boven open.

5. Neem het deksel af.

9.3 SmartOutput-module

De SmartOutput-module is voorbereid voor installatie op een DIN-rail.

10. SREL3 ADV in de LSM

10.1 Overstap van SREL2 naar SREL3.ADV

Het is mogelijk tussen de verschillende generaties van het SmartRelaissysteem te wisselen. Neem contact op met Support om een probleemloze afwikkeling te garanderen (zie Hulp en contact).

10.2 Toegangslijst

OPMERKING

De passagelijst is alleen beschikbaar in de .ZK-variant.

10.2.1 Passagelijst uitlezen

Het SmartRelais 3 kan ook zo worden ingesteld, dat alle identificatiepogingen (zelfs onbevoegde) in een passagelijst worden bewaard. Deze passage- of toegangslijst kunt u dan uitlezen. Het uitlezen ervan kan met de Task Manager ook geautomatiseerd worden (zie LSMmanual).

10.2.1.1 Passagelijst uitlezen met USB-kabel

Wanneer u de passagelijst wilt uitlezen via een USB-verbinding, gaat u als volgt te werk.

- ✓ Componenten naar behoren aangesloten (zie *Bedrading* [▶ 62]).
- ✓ Componenten van spanning voorzien.
- ✓ Controller met USB-kabel op pc aangesloten.
- 1. Markeer in de Matrix de invoer van de controller van het SmartRelais 3.

2. Kies via de | programmering | de invoer Geselecteerde sluiting uitlezen / klok instellen uit.

prog	rammering	netwerk	Opties	Venster	Help		
	transponder					Ctrl+Shift+T	
	Sluiting					Ctrl+Shift+L	
	Geselecteerd	le sluiting u	uitlezen /	klok inste	llen	Ctrl+Shift+K	
	Sluiting uitle	zen				Shift+U	
	Mifare sluitir	ng uitlezen				Ctrl+Shift+B	
	transponder	uitlezen				Ctrl+Shift+R	
	G1 kaart uitle	ezen				Ctrl+Shift+E	
	G2 kaart uitle	ezen				Ctrl+Shift+F	
	Sluiting uitle	zen via US	3				
	bijzondere fu	uncties					>
	noodopenin	g uitvoerer	n				
	SmartCD tes	ten					
	SmartCD Mi	fare testen					
	LSM Mobile						>

└→ Venster "Sluiting uitlezen" gaat open.

Sluiting uitlezen		\times
sluitsysteem: Deur / Sluiting:	Testprojekt	f
Programmeerapparaat:		
Туре:	USB-verbinding naar het TCP-knooppunt 📃 💌	
Apparaat:	USB-Anschluß	
uitlezen	tijd stellen beëindigen	

3. Open het dropdown-menu ▼ type.

4. Kies de invoer "USB-verbinding naar het TCP-knooppunt" uit.

USB-verbinding naar het TCP-knooppunt	•
SmartCD	
TCP-knooppunt	
USB-verbinding naar het TCP-knooppunt	
SmartCD Mifare	

- 5. Klik op de button uitlezen.
 - └→ Venster "G2 Smart Relais 3" gaat open.
- 6. Klik op de button uitlezen.
- 7. Klik op de button toegangslijst.
- └ De passagelijst wordt weergegeven.
- 10.2.1.2 Passagelijst uitlezen over het netwerk

Wanneer u de passagelijst wilt uitlezen via een netwerkverbinding, gaat u als volgt te werk.

- ✓ Componenten naar behoren aangesloten (zie *Bedrading* [▶ 62]).
- ✓ Componenten van spanning voorzien.
- ✓ De controller is al geprogrammeerd.
- ✓ De controller is via een netwerk verbonden met de pc.
- 1. Markeer in de Matrix de invoer van de controller van het SmartRelais 3.

2. Kies via de | programmering | de invoer Geselecteerde sluiting uitlezen / klok instellen uit.

prog	rammering	netwerk	Opties	Venster	Help		
	transponder					Ctrl+Shift+T	
	Sluiting					Ctrl+Shift+L	
	Geselecteerd	le sluiting u	itlezen /	klok inste	llen	Ctrl+Shift+K	
	Sluiting uitle	zen				Shift+U	
	Mifare sluitir	ng uitlezen				Ctrl+Shift+B	
	transponder	uitlezen				Ctrl+Shift+R	
	G1 kaart uitl	ezen				Ctrl+Shift+E	
	G2 kaart uitl	ezen				Ctrl+Shift+F	
	Sluiting uitle	zen via USE	3				
	bijzondere fi	uncties					>
	noodopenin	g uitvoerer	n				
	SmartCD tes	ten					
	SmartCD Mi	fare testen					
	LSM Mobile						>

[→] Venster "Sluiting uitlezen" gaat open.

Sluiting uitlezen		×
sluitsysteem: Deur / Sluiting:	Testprojekt	
Programmeerapparaat:		
Type:	TCP-knooppunt	
Apparaat:	192.168.100.113	
uitlezen	tijd stellen beëindigen	

3. Open het dropdown-menu ▼ type.

- 4. Kies de invoer "TCP-knooppunt" uit.
- 5. Klik op de button uitlezen.
 - → Het sluitelement wordt uitgelezen.
 - → Het venster "G2-Smart Relay 3" gaat open.
- 6. Klik op de button uitlezen.
- 7. Klik op de button toegangslijst.
- └→ De passagelijst wordt weergegeven.

10.2.2 Passagelijst resetten

Om de passagelijst blijvend te wissen, moet hij zowel uit de LSM als van de controller worden verwijderd. De passagelijst wordt tussen de controller en de LSM gesynchroniseerd en bewaard. De controller beschikt hiervoor over een ingebouwd geheugen.

10.2.2.1 Passagelijst resetten met USB-kabel

Passagelijst in de controller wissen

Reset de controller (zie *Controller met USB-kabel resetten* [+ 35]).

Passagelijst in de LSM wissen

- 1. Open de instellingen van het SmartRelais 3 met een dubbele muisklik op de betreffende vermelding in de Matrix.
- 2. Ga naar de registerkaart [toegangslijst].
- 3. Klik op de button toegangslijst wissen.
- 4. Bevestig de vraag daarna met OK.
- └→ De passagelijst is gewist.

Programmering van de controller

Door het resetten van de controller ontstaat programmeerbehoefte. Voer een programmering van de controller uit (zie *Programmering* [▶ 31]).

10.2.2.2 Passagelijst resetten via het netwerk

Passagelijst in de controller wissen

Reset de controller (zie Controller via het netwerk resetten [> 37]).

Passagelijst in de LSM wissen

- 1. Open de instellingen van het SmartRelais 3 met een dubbele muisklik op de betreffende vermelding in de Matrix.
- 2. Ga naar de registerkaart [toegangslijst].
- 3. Klik op de button toegangslijst wissen.
- 4. Bevestig de vraag daarna met OK .
- └→ De passagelijst is gewist.

Programmering van de controller

Door het resetten van de controller ontstaat programmeerbehoefte. Voer een programmering van de controller uit (zie *Programmering* [▶ 31]).

10.2.3 Protocollering onbevoegde pogingen tot toegang

In de toestand bij uitlevering worden alleen de bevoegde passages geprotocolleerd. U kunt ook onbevoegde toegangspogingen laten protocolleren.

- ✓ LSM vanaf 3.4 geïnstalleerd.
- ✓ Componenten naar behoren aangesloten (zie *Bedrading* [▶ 62]).
- ✓ Componenten van spanning voorzien.
- 1. Open de instellingen door dubbel te klikken op de vermelding van het SmartRelais 3 in de Matrix.
- 2. Ga naar de registerkaart [Configuratie / data].
- 3. Vink de checkbox 🔽 onbevoegde toegangen protocolleren aan.
- 4. Klik op de button overnemen.
- 5. Klik op de button beëindigen.
- 6. Voer een programmering uit (zie *Programmering* [> 31]).
- → Ook onbevoegde pogingen tot toegang worden nu geregistreerd.

10.3 FlipFlop

De reactietijd van het relais in de controller is vrij programmeerbaar tussen 0 s en 25 s. Wanneer het relais in de controller continu moet schakelen, kunt u de FlipFlop-modus activeren.

LET OP

Omschakelen van het relaiscontact bij stroomuitval

De relais in de controller zijn niet bi-stabiel. Voor de geschakelde status is daarom continu stroom nodig. Bij een stroomuitval worden de relais niet meer van stroom voorzien. Ze schakelen dan afhankelijk van de uitgangspositie ook zonder bediening met een identificatiemedium in de stroomloze toestand!

Sluit de externe componenten daarom dusdanig aan dat de stroomloze toestand geen risico's inhoudt.

OPMERKING

De optie FlipFlop is niet beschikbaar wanneer het SREL3-ADV-systeem met SmartOutput-modules wordt gebruikt.

- ✓ LSM vanaf 3.4 SP1 geïnstalleerd.
- Componenten van spanning voorzien.
- ✓ Componenten naar behoren aangesloten (zie *Bedrading* [▶ 62]).
- ✓ De controller is al geprogrammeerd.
- 1. Open de instellingen door dubbel te klikken op de vermelding van het SmartRelais 3 in de Matrix.
- 2. Ga naar de registerkaart [Configuratie / data].
- 3. Vink de checkbox 🔽 flip flop aan.
- 4. Klik op de button overnemen.
- 5. Klik op de button beëindigen.
- 6. Voer een programmering uit (zie *Programmering* [▶ 31]).
- → FlipFlop-modus is geactiveerd.

10.4 Tijdbudgets

Tijdbudgets zijn een comfortabele manier om in virtuele netwerken een regelmatige update van de identificatiemedia te realiseren. Door een tijdbudget toe te wijzen, dat bij een Gateway moet worden opgeladen, zijn de gebruikers gedwongen het identificatiemedium regelmatig bij een Gateway te gebruiken. Hierbij wordt niet alleen het tijdbudget opgeladen, maar ook voor andere updates gezorgd.

Identificatiemedia kunnen verloren of gestolen worden. De verstrekking van een tijdbudget zorgt ervoor dat identificatiemedia na het verstrijken van dit tijdtegoed niet meer automatisch bevoegd zijn bij de sluitelementen, omdat het tijdbudget na het intrekken van de rechten niet meer oplaadbaar is. Zo verhoogt de verstrekking van een tijdbudget de veiligheid binnen het sluitsysteem.

10.4.1 Ontwerp van een tijdbudget voor nieuwe identificatiemedia in het sluitsysteem

- ✓ De controller is al geprogrammeerd.
- ✓ Componenten naar behoren aangesloten (zie *Bedrading* [▶ 62]).
- ✓ Componenten van spanning voorzien.
- ✓ Controller via USB of TCP/IP verbonden met de pc.
- ✓ Virtueel netwerk ingericht.
- ✓ Controller als Gateway geconfigureerd.
- 1. Klik op de button ...,
- 2. Ga naar de registerkaart [naam].
- 3. Kies in het menupunt "Dynamisch tijdvak voor transponder G2" één van de opties.
- 4. Voer eventueel een aantal uur in.
- 5. Klik op de button overnemen.
 - └→ Globaal tijdbudget ingesteld.
- 6. Klik op de button beëindigen.
- 7. Voer een programmering uit (zie *Programmering* [▶ 31]).
- → Nieuw aangemaakte identificatiemedia kopiëren bij hun creatie automatisch dit ingestelde tijdbudget.

OPMERKING

Wanneer reeds aangemaakte identificatiemedia een ander, of helemaal geen tijdbudget moet worden toegewezen, dan kunt u een individueel tijdbudget verstrekken.

- 1. Open de eigenschappen van het identificatiemedium met een dubbele muisklik op de betreffende vermelding in de Matrix.
- 2. Ga naar [Configuratie].
- 3. Wijs in het menupunt "Dynamisch tijdvenster" een individueel tijdbudget toe.
- 4. Klik op de button Verzenden.
- 5. Klik op de button beëindigen.
- └→ Individueel tijdbudget toegewezen.

10.4.2 Activerings-/vervaldatum negeren

Identificatiemedia kunnen worden voorzien van een geldigheidsdatum. Deze geldigheidsdatum kan genegeerd worden, wanneer de identificatiemedia desondanks gebruikt moeten worden.

- ✓ De controller is al geprogrammeerd.
- ✓ Componenten naar behoren aangesloten (zie *Bedrading* [▶ 62]).
- ✓ Componenten van spanning voorzien.
- 1. Open de instellingen door dubbel te klikken op de vermelding van het SmartRelais 3 in de Matrix.
- 2. Ga naar de registerkaart [Configuratie / data].
- 3. Vink de checkbox 🗹 Activerings- resp. vervaldatum negeren aan.
- 4. Klik op de button overnemen.
- 5. Klik op de button beëindigen.
- 6. Voer een programmering uit (zie *Programmering* [▶ 31]).

10.5 Gevolgen bij uitval van het netwerk

Wanneer het netwerk uitvalt, wordt alleen een deel van de informatie doorgegeven:

- tijdbudgets en tijdelijk bewaarde blokkeer-id's worden nog steeds door de controller doorgegeven aan de identificatiemedia. Het sluitsysteem blijft functioneren.
- Bewijzen voor blokkeringen worden door de identificatiemedia doorgegeven aan de controller. Bij kaarten wordt ook de passagelijst nog aan de controller doorgegeven. Alle informatie blijft tijdelijk bewaard in de controller. Na herstel van de verbinding geeft de controller de bewaarde informatie door aan de LSM.
- Wijzigingen van rechten in het virtuele netwerk worden niet bewerkt.
- Input-gebeurtenissen worden niet aan de database doorgegeven en vervallen.

10.6 Signaleringsinstellingen

Bij sommige toepassingen kan een optisch of akoestisch signaal ongewenst zijn. U kunt de signalering aan uw wensen aanpassen.

- ✓ LSM vanaf 3.4 geïnstalleerd.
- ✓ De controller is al geprogrammeerd.
- ✓ Componenten naar behoren aangesloten (zie *Bedrading* [▶ 62]).
- Componenten van spanning voorzien.
- 1. Open de instellingen door dubbel te klikken op de vermelding van het SmartRelais 3 in de Matrix.

- 2. Ga naar de registerkaart [Configuratie / data].
- 3. Klik op de button Uitgebreide configuratie.
 - → Het venster "Uitgebreide configuratie" gaat open.

Uitgebreide configuratie				×
doel Tijdgestuurde omschakeling C handmatige vergrendeling G handmatige ontgrendeling transponder actief: C altijd	 automatische vergrendeling automatische ontgrendeling alleen indien vergrendeld 	status Tijdgestuurde omschakeling C handmatige vergrendeling Image: handmatige ontgrendeling transponder actief: C altijd	 automatische vergrendeling automatische ontgrendeling alleen indien vergrendeld 	
LED-uitschakelen Beeper uitschakelen seriële poort	geen	LED-uitschakelen Beeper uitschakelen seriële poort	geen 💌	
uitgangen inverteren	1	Utbreidingsmodule		
ок			afbreke	n

- 4. Activeer of deactiveer het hokje **I** LED-uitschakelen.
- 5. Activeer of deactiveer het hokje 🔽 Beeper uitschakelen.
- 6. Klik op de button OK .
 - → Het venster gaat dicht.
- 7. Klik op de button overnemen.
- 8. Klik op de button beëindigen.
- 9. Voer een programmering uit (zie *Programmering* [▶ 31]).
- → Signalering is aangepast.

10.7 Gebruik als interface

Het SREL3-ADV-systeem kan gebruikt worden om met de identificatiemedia een extern systeem aan te sturen. Hiervoor kunnen de gespecificeerde interfaces worden gekozen (zie *Controller [* 174]*). Voor de bedrading, zie *Gebruik van de seriële interface [* 69]*). Uitgebreide specificaties van de aangeboden interfaces zijn verkrijgbaar via de Support (zie Hulp en contact). Wanneer gegevens via de seriële poort moeten worden doorgegeven, moet deze eerste geactiveerd worden en moet het betreffende protocol ingesteld worden:

- ✓ De controller is al geprogrammeerd.
- ✓ Componenten naar behoren aangesloten (zie *Bedrading* [▶ 62]).
- Componenten van spanning voorzien.
- 1. Open de instellingen door dubbel te klikken op de vermelding van het SmartRelais 3 in de Matrix.
- 2. Ga naar de registerkaart [Configuratie / data].

- 3. kik op de button Uitgebreide configuratie.
 - → Het venster "Uitgebreide configuratie" gaat open.

Uitgebreide configuratie			×
doel		status	
Tijdgestuurde omschakeling		Tijdgestuurde omschakeling	
C handmatige vergrendeling	automatische vergrendeling	C handmatige vergrendeling	automatische vergrendeling
Andmatige ontgrendeling	C automatische ontgrendeling	Andmatige ontgrendeling	C automatische ontgrendeling
transponder actief:		transponder actief:	
C altijd	e alleen indien vergrendeld	C altijd	alleen indien vergrendeld
LED-uitschakelen		LED-uitschakelen	
seriële poort	geen 💌	seriële poort	geen 💌
- Uitbreidingsmodule		Uitbreidingsmodule	
aantal	1		
🔲 uitgangen inverteren		uitgangen inverteren	
ОК			afbreken

- 4. Open het dropdownmenu ▼ seriële poort.
- 5. Kies de vermelding die bij uw externe systeem past.

geen 💌
geen
Wiegand 33-bit
Wiegand 26-bit
Primion
Siemens
Kaba Benzing
Gantner Legic
Isgus

- 6. Klik op de button OK .
 - \mapsto Het venster gaat dicht.
- 7. Klik op de button overnemen.
- 8. Klik op de button beëindigen.
- 9. Voer een programmering uit (zie *Programmering* [> 31]).
- Gegevens worden nu gevoerd via de seriële poort.

10.7.1 Specificatie van de seriële interfaces met CLS

Uw SmartRelais kan niet alleen identificatiemedia lezen en een relais schakelen, maar ook puur dienen als lezer voor identificatiemediumgegevens. Deze gegevens zijn:

- klant-ID of sluitsysteem-ID
- transponder-ID

De uitgelezen identificatiemediumgegevens worden daarna via een seriële interface in verschillende gegevensformaten doorgegeven aan externe systemen. Voorbeelden voor dergelijke externe systemen:

- tijdregistratiesystemen
- kantineafrekeningssystemen

Op deze manier kunt u met slechts één identificatiemedium alle relevante systemen bedienen, zoals:

- gebouwautomatisering
- toegangscontrole
- tijdregistratie
- kantineafrekening

De seriële interface ondersteunt verschillende signaal- en gegevensformaten voor de diverse merken:

- Wiegand26 (standaardformaat)
- Wiegand33 (voor PRIMION-verbindingen)
- OMRON Primion
- OMRON Siemens-CerPass
- OMRON Gantner-Legic
- 👪 OMRON Dormakaba
- OMRON Isgus
- 10.7.1.1 Wiegand26 (standaardformaat)

Signaalbeschrijving

Een Wiegand-interface gebruikt de volgende gestandaardiseerde signalen:

Signaal	Betekenis	Toelich- ting	Aanslui- ting SREL.ADV	Aanslui- ting SREL3 ADV	Aanslui- ting SREL AX Classic
DO	Data 0		F1 ('D0')	01	Uitgang 1
DI	Data 1		F2 ('D1')	02	Uitgang 2
CLS	Card Loa- ding Signal	Optioneel configu- reerbaar	F3 ('led/ zoemer/in- gang1')	О3	Niet be- schikbaar

Alle outputs zijn open-drain. Voor de signaalkabels moet een pull-up weerstand (typ. 1 k Ω tot 10 k Ω) en de positieve voeding (3 V_{DC} tot 24 V_{DC}) worden voorzien.

De signalen zijn 'Active Low'.

Timing van de signalen

Tijd	Beschrij- ving	Min.	Туре	max.	Eenheid
t _{cls-}	Tijd tussen activering van het CLS-sig- naal en eerste ge- gevensbit	8	10	12	ms
t _{dL}	Pulsbreed- te databit	80	100	120	μs
t _{pi}	Tijd tussen twee bits (idle time)	800	900	1000	ha
t _{pP}	Signaalpe- riode (data rate peri- od)	900	1000	1100	μs

Tijd	Beschrij- ving	Min.	Туре	max.	Eenheid
t _{cls+}	Tijd tussen laatste ge- gevensbit en deacti- vering van het CLS- signaal	8	10	12	ms

Gegevensformaat (Wiegand 26-bit)

Dit is de standaard Wiegand-interface. De facilitycode is verkort tot 8 bits.

Bitnummer	Betekenis
Bit 1	Pariteitsbit (even) via bits 2 t/m 13
Bits 2 t/m 9	Facility code (0 tot 255). Bit 2 is MSB.
Bits 10 t/m 25	User-ID-nummer (0 t/m 65.535). Bit 10 is MSB.
Bit 26	Pariteitsbit (oneven) via bits 14 t/m 25.

10.7.1.2 Wiegand33 (voor PRIMION-verbindingen)

Signaalbeschrijving

Een Wiegand-interface gebruikt de volgende gestandaardiseerde signalen:

Signaal	Betekenis	Toelich- ting	Aanslui- ting SREL.ADV	Aanslui- ting SREL3 ADV	Aanslui- ting SREL AX Classic
DO	Data 0		F1 ('D0')	01	Uitgang 1
DI	Data 1		F2 ('D1')	02	Uitgang 2
CLS	Card Loa- ding Signal	Optioneel configu- reerbaar	F3 ('led/ zoemer/in- gang1')	03	Niet be- schikbaar

Alle outputs zijn open-drain. Voor de signaalkabels moet een pull-up weerstand (typ. 1 k Ω tot 10 k Ω) en de positieve voeding (3 V_{DC} tot 24 V_{DC}) worden voorzien.

De signalen zijn 'Active Low'.

"Gegevens worden overgebracht"

\$

Timing van de signalen

Tijd	Beschrij- ving	Min.	Туре	max.	Eenheid
t _{CLS-}	Tijd tussen activering van het CLS-sig- naal en eerste ge- gevensbit	8	10	12	ms
t _{dL}	Pulsbreed- te databit	80	100	120	μs
t _{pl}	Tijd tussen twee bits (idle time)	800	900	1000	hz
t _{pP}	Signaalpe- riode (data rate peri- od)	900	1000	1100	μs

Tijd	Beschrij- ving	Min.	Туре	max.	Eenheid
t _{cls+}	Tijd tussen laatste ge- gevensbit en deacti- vering van het CLS- signaal	8	10	12	ms

Gegevensformaat (Wiegand 33-bit)

Dit is een aangepast Wiegand-formaat. Het bevat de volledige 16-bits facility-code (of sluitsysteem-ID).

Bitnummer	Betekenis
Bits 1 t/m 16	Facility code (0 t/m 65.535). Bit 1 is MSB.
Bits 17 t/m 32	User-ID-nummer (0 t/m 65.535). Bit 17 is MSB.
Bit 33	Pariteitsbit (oneven) via bits 1 t/m 32.

10.7.1.3 OMRON Primion

Signaalbeschrijving

Een OMRON-interface gebruikt de volgende gestandaardiseerde signalen:

Signaal	Betekenis	Toelich- ting	Aanslui- ting SREL.ADV	Aanslui- ting SREL3 ADV	Aanslui- ting SREL AX Classic
DATA	Data		F1 ('D0')	01	Uitgang 1
CLK	Clock		F2 ('D1')	02	Uitgang 2
CLS	Card Loa- ding Signal	Optioneel configu- reerbaar	F3 ('led/ zoemer/in- gang1')	03	Niet be- schikbaar

Alle outputs zijn open-drain. Voor de signaalkabels moet een pull-up weerstand (typ. 1 k Ω tot 10 k Ω) en de positieve voeding (3 V_{DC} tot 24 V_{DC}) worden voorzien.

De signalen zijn 'Active Low'. De gegevens zijn geldig vanaf de dalende CLK-flank.

Timing van de signalen

Tijd	Beschrij- ving	Min.	Туре	max.	Eenheid
t _{CLS-}	Tijd tussen activering van het CLS-sig- naal en eerste ge- gevensbit	8	12	20	ms
t _{clk}	Taktperio- de (clock period)	290	320	350	ha
t _s	Insteltijd voor data- bit	50	100	150	hz
t _{co}	t _{co} t _{co} bit Takt op 'low'-ni- veau (clock low)		100	150	hz

Tijd	Beschrij- ving	Min.	Туре	max.	Eenheid
t _{CLS+}	Tijd tussen laatste ge- gevensbit en deacti- vering van het CLS- signaal	8	12	20	ms

Gegevensformaat (OMRON Primion)

Hierna bestaat elk bericht uit een reeks letters ('characters').

Elke 'character' wordt weergegeven door een reeks van 5 bits (BCD-code+pariteit):

Bit 1 (LSB)	Bit 2	Bit 3	Bit 4 (MSB)	Bit 5 (oneven pariteitsbit via bits 1 t/m 4)
-------------	-------	-------	-------------	--

Gegevensstructuur van een bericht:

S AAAAA BBBBB E

Betekenis:

S	Start-character (Hex B)
А	Facility code (0 t/m 99.999)
В	User-ID-nummer (0 t/m 99.999)
E	End-character (Hex F)

Voorbeeld:

Facility code: 563

User-ID: 3.551

S	А	А	А	А	А	В	В	В	В	В	E
Start - char ac- ter	Facilit	cy code	2			User-	ID				End- char ac- ter
1101 0	000 01	000 01	1010 1	0110 1	1100 1	000 01	1100 1	1010 1	1010 1	100 00	11111
В	0	0	5	6	3	0	3	5	5	1	F

10.7.1.4 OMRON Siemens-CerPass

Signaalbeschrijving

Een OMRON-interface gebruikt de volgende gestandaardiseerde signalen:

Signaal	Betekenis	Toelich- ting	Aanslui- ting SREL.ADV	Aanslui- ting SREL3 ADV	Aanslui- ting SREL AX Classic
DATA	Data		F1 ('D0')	01	Uitgang 1
CLK	Clock		F2 ('D1')	02	Uitgang 2
CLS	Card Loa- ding Signal	Optioneel configu- reerbaar	F3 ('led/ zoemer/in- gang1')	О3	Niet be- schikbaar

Alle outputs zijn open-drain. Voor de signaalkabels moet een pull-up weerstand (typ. 1 k Ω tot 10 k Ω) en de positieve voeding (3 V_{DC} tot 24 V_{DC}) worden voorzien.

De signalen zijn 'Active Low'. De gegevens zijn geldig vanaf de dalende CLK-flank.

Timing van de signalen

Tijd	Beschrij- ving	Min.	Туре	max.	Eenheid
t _{CLS-}	Tijd tussen activering van het CLS-sig- naal en eerste ge- gevensbit	8	12	20	ms
t _{clk}	Taktperio- de (clock period)	290	320	350	hz
t _s	Insteltijd voor data- bit	50	100	150	hz
t _{co}	Takt op 'low'-ni- veau (clock low)	50	100	150	ha
t _{CLS+}	Tijd tussen laatste ge- gevensbit en deacti- vering van het CLS- signaal	8	12	20	ms

Gegevensformaat (OMRON Siemens-CerPass)

Hierna bestaat elk bericht uit een reeks letters ('characters').

Elke 'character' wordt weergegeven door een reeks van 5 bits (BCD-code+pariteit):

Bit 1 (LSB)	Bit 2	Bit 3	Bit 4 (MSB)	Bit 5 (oneven pariteitsbit via bits
				1 t/m 4)

Gegevensstructuur van een bericht:

<10 leading zero bits> S AAAAA BBBBB E L

Betekenis:

S	Start-character (Hex B)

A	Facility code (0 t/m 99.999)
В	User-ID-nummer (0 t/m 99.999)
E	End-character (Hex F)
L	Lengtepariteitscontroleteken (over alle doorgegeven characters SE)

10.7.1.5 OMRON Gantner-Legic

Signaalbeschrijving

Een OMRON-interface gebruikt de volgende gestandaardiseerde signalen:

Signaal	Betekenis	Toelich- ting	Aanslui- ting SREL.ADV	Aanslui- ting SREL3 ADV	Aanslui- ting SREL AX Classic
DATA	Data		F1 ('D0')	01	Uitgang 1
CLK	Clock		F2 ('D1')	02	Uitgang 2
CLS	Card Loa- ding Signal	Optioneel configu- reerbaar	F3 ('led/ zoemer/in- gang1')	O3	Niet be- schikbaar

Alle outputs zijn open-drain. Voor de signaalkabels moet een pull-up weerstand (typ. 1 k Ω tot 10 k Ω) en de positieve voeding (3 V_{DC} tot 24 V_{DC}) worden voorzien.

De signalen zijn 'Active Low'. De gegevens zijn geldig vanaf de dalende CLK-flank.

Timing van de signalen

Tijd	Beschrij- ving	Min.	Туре	max.	Eenheid
t _{CLS-}	Tijd tussen activering van het CLS-sig- naal en eerste ge- gevensbit	8	12	20	ms
t _{clk}	Taktperio- de (clock period)	290	320	350	ha
t _s	Insteltijd voor data- bit	50	100	150	hz
t _{co}	Takt op 'low'-ni- veau (clock low)	50	100	150	hz

Tijd	Beschrij- ving	Min.	Туре	max.	Eenheid
t _{cls+}	Tijd tussen laatste ge- gevensbit en deacti- vering van het CLS- signaal	8	12	20	ms

Gegevensformaat (OMRON Gantner-Legic)

Hierna bestaat elk bericht uit een reeks letters ('characters').

Elke 'character' wordt weergegeven door een reeks van 5 bits (BCD-code+pariteit):

Bit 1 (LSB)	Bit 2	Bit 3	Bit 4 (MSB)	Bit 5 (oneven pariteitsbit via bits 1 t/m 4)
-------------	-------	-------	-------------	--

Gegevensstructuur van een bericht:

<15 leading zero bits> S CCCCCCC AAAA M N BBBBBB E L <15 trailing zero bits>

Betekenis:

S	Start-character (Hex B)
C	Constant (Hex 1A210001)
А	Facility code (0 t/m 9.999)
М	Separator (Hex 0)
Ν	Separator (Hex 1)
В	User-ID-nummer (0 t/m 999.999)
E	End-character (Hex F)
L	Lengtepariteitscontroleteken (over alle doorgegeven characters SE)

10.7.1.6 OMRON Kaba-Benzing

Signaalbeschrijving

Een OMRON-interface gebruikt de volgende gestandaardiseerde signalen:

Signaal	Betekenis	Toelich- ting	Aanslui- ting SREL.ADV	Aanslui- ting SREL3 ADV	Aanslui- ting SREL AX Classic
DATA	Data		F1 ('D0')	01	Uitgang 1
CLK	Clock		F2 ('D1')	02	Uitgang 2
CLS	Card Loa- ding Signal	Optioneel configu- reerbaar	F3 ('led/ zoemer/in- gang1')	О3	Niet be- schikbaar

Alle outputs zijn open-drain. Voor de signaalkabels moet een pull-up weerstand (typ. 1 k Ω tot 10 k Ω) en de positieve voeding (3 V_{DC} tot 24 V_{DC}) worden voorzien.

De signalen zijn 'Active Low'. De gegevens zijn geldig vanaf de dalende CLK-flank.

Timing van de signalen

Tijd	Beschrij- ving	Min.	Туре	max.	Eenheid
t _{CLS-}	Tijd tussen activering van het CLS-sig- naal en eerste ge- gevensbit	8	12	20	ms
t _{clk}	Taktperio- de (clock period)	290	320	350	hz
t _s	Insteltijd voor data- bit	50	100	150	hz
t _{co}	Takt op 'low'-ni- veau (clock low)	50	100	150	ha
t _{CLS+}	Tijd tussen laatste ge- gevensbit en deacti- vering van het CLS- signaal	8	12	20	ms

Gegevensformaat (OMRON Kaba-Benzing)

Hierna bestaat elk bericht uit een reeks letters ('characters').

Elke 'character' wordt weergegeven door een reeks van 5 bits (BCD-code+pariteit):

Bit 1 (LSB)	Bit 2	Bit 3	Bit 4 (MSB)	Bit 5 (oneven pariteitsbit via bits 1 t/m 4)

Gegevensstructuur van een bericht:

<15 leading zero bits> S CCCCCCC AAAAAAAA BBBBBB E L <15 laging zero bits>

Betekenis:

aracter (He	кB)
-------------	-----

S

С	Constant (Hex 00000000)
А	Facility code (0 t/m 99.999.999)
В	User-ID-nummer (0 t/m 999.999)
E	End-character (Hex F)
L	Lengtepariteitscontroleteken (over alle doorgegeven characters SE)

10.7.1.7 OMRON Isgus

Signaalbeschrijving

Een OMRON-interface gebruikt de volgende gestandaardiseerde signalen:

Signaal	Betekenis	Toelich- ting	Aanslui- ting SREL.ADV	Aanslui- ting SREL3 ADV	Aanslui- ting SREL AX Classic
DATA	Data		F1 ('D0')	01	Uitgang 1
CLK	Clock		F2 ('D1')	02	Uitgang 2
CLS	Card Loa- ding Signal	Optioneel configu- reerbaar	F3 ('led/ zoemer/in- gang1')	О3	Niet be- schikbaar

Alle outputs zijn open-drain. Voor de signaalkabels moet een pull-up weerstand (typ. 1 k Ω tot 10 k Ω) en de positieve voeding (3 V_{DC} tot 24 V_{DC}) worden voorzien.

De signalen zijn 'Active Low'. De gegevens zijn geldig vanaf de dalende CLK-flank.

Timing van de signalen

Tijd	Beschrij- ving	Min.	Туре	max.	Eenheid
t _{cls-}	Tijd tussen activering van het CLS-sig- naal en eerste ge- gevensbit	8	12	20	ms
t _{clk}	Taktperio- de (clock period)	290	320	350	ha
t _s	Insteltijd voor data- bit	50	100	150	hz
t _{co}	Takt op 'low'-ni- veau (clock low)	50	100	150	ha

Tijd	Beschrij- ving	Min.	Туре	max.	Eenheid
t _{cls+}	Tijd tussen laatste ge- gevensbit en deacti- vering van het CLS- signaal	8	12	20	ms

Gegevensformaat (OMRON lsgus)

Hierna bestaat elk bericht uit een reeks letters ('characters').

Elke 'character' wordt weergegeven door een reeks van 5 bits (BCD-code+pariteit):

Bit 1 (LSB)	Bit 2	Bit 3	Bit 4 (MSB)	Bit 5 (oneven pariteitsbit via bits 1 t/m 4)
-------------	-------	-------	-------------	--

Gegevensstructuur van een bericht:

S BBBB M AAAA E L

Betekenis:

S	Start-character (Hex B)
В	User-ID-nummer (0 t/m 9.999)
М	5e cijfer van het user-ID-nummer
А	Facility code (0 t/m 9.999)
E	End-character (Hex F)
L	Lengtepariteitscontroleteken (over alle doorgegeven characters XOR(SE))

10.8 NFC-optie

Bij sommige toepassingen is een kleinere reikwijdte van de lezer gewenst. De NFC-optie verkleint het bereik van de lezer voor transponders. Hiermee wordt de invloed van eventuele storingsbronnen verminderd en oversturen van de transponder voorkomen.

- ✓ LSM vanaf 3.4 geïnstalleerd.
- ✓ Componenten naar behoren aangesloten (zie *Bedrading* [▶ 62]).
- ✓ Componenten van spanning voorzien.
- 1. Open de instellingen door dubbel te klikken op de vermelding van het SmartRelais 3 in de Matrix.
- 2. Ga naar de registerkaart [Configuratie / data].
- 3. Vink de checkbox 🗹 Modus dichtbijgelegen bereik aan.
- 4. Klik op de button overnemen.
- 5. Klik op de button beëindigen .
- 6. Voer een programmering uit (zie *Programmering* [▶ 31]).
- → De NFC-optie is nu geactiveerd.

10.9 Schakelduur

U kunt de duur van de opening van 0 s tot 25 s vrij instellen. De openingsduur die op de controller is ingesteld, geldt ook voor de SmartOutput-module.

LET OP

Onopzettelijk openen van de SmartOutput-module

Wanneer in de LSM een pulslengte is ingesteld van 0 s, dan schakelt de SmartOutput-module desondanks ongeveer drie seconden lang.

OPMERKING

Lang activeren door de SmartOutput-module niet ondersteund

SmartOutput-modules maken gebruik van het G1-protocol. Het G1-protocol ondersteunt de functie Lang openstaand niet. De ingezette Smart-Output-modules openen onafhankelijk van deze instelling op de transponder met de tijdsduur die in de controller is ingesteld.

- ✓ Componenten naar behoren aangesloten (zie *Bedrading* [▶ 62]).
- Componenten van spanning voorzien.
- 1. Open de instellingen door dubbel te klikken op de vermelding van het SmartRelais 3 in de Matrix.
- 2. Ga naar de registerkaart [Configuratie / data].
- 3. Voer de gewenste pulslengte in.
- 4. Klik op de button overnemen.
- 5. Klik op de button beëindigen.
- 6. Voer een programmering uit (zie *Programmering* [▶ 31]).
- → De duur van de schakeling is ingesteld.

10.10 Software-Reset

U kunt een Software-Reset uitvoeren in de LSM. Wanneer de controller is gereset door een andere LSM, dan kan de LSM de geresette controller niet meer regelen. In de LSM bestaat nog informatie over de controller, die niet meer actueel is. De Software-Reset reset alle in de LSM bewaarde informatie van de controller in de LSM. Hierdoor zijn de LSM en de controller weer synchroon (allebei gereset) en de LSM kan weer communiceren met de controller.

- 1. Open de instellingen door dubbel te klikken op de vermelding van het SmartRelais 3 in de Matrix.
- 2. Ga naar de registerkaart [Configuratie / data].
- 3. Klik op de button Software-reset .
 - → Het venster "LockSysMgr" gaat open.

LockSysMg	gr	\times
<u> </u>	Weet u zeker dat u de werkelijke status van de sluiting op nul zetten wilt zetten? Het is mogelijk dat de betreffende sluiting dan niet meer geprogrammeerd kan worden.	
	Ja Nein	

- 4. Klik op de button OK .
- 5. Klik op de button Ja.
- └→ De Software-Reset is uitgevoerd.

10.11 Tijdomstelling

LET OP

Onopzettelijk openen door gebruik met de SmartOutput-module

Het openingsgedrag met de SmartOutput-module in combinatie met een tijdzonesturing is afwijkend van het openingsgedrag zonder SmartOutput-module.

Alle relais van de SmartOutput-module worden geschakeld.

 Raadpleeg de hoofdstukken Uitgebreide configuratie met SmartOutput-modules [> 145] en Uitgebreide configuratie zonder SmartOutput-module [> 144].

Voor de tijdomstelling is de vijfde groep van het tijdzoneplan relevant.

Toewijzing van een tijdzoneplan

- ✓ LSM opgestart.
- ✓ SREL3-ADV-systeem aangemaakt.
- Tijdzoneplan aangemaakt.
- 1. Open de instellingen door dubbel te klikken op de vermelding van het SmartRelais 3 in de Matrix.
- 2. Ga naar de registerkaart [Deur].
- 3. Open het dropdown-menu ▼ Tijdzone.
- 4. Selecteer uw tijdzone.
- 5. Klik op de button overnemen.
- 6. Klik op de button beëindigen.
- └→ De tijdzone is geselecteerd.

Activeren van de tijdzonesturing en de tijdomstelling

Terwijl de tijdzonesturing op zich enkel invloed heeft op de rechten van identificatiemedia, activeert de tijdomstelling ook het tijdgestuurde schakelen van het relais in de controller. Beide functies moeten geactiveerd worden.

- ✓ LSM opgestart.
- ✓ SREL3-ADV-systeem aangemaakt.
- Tijdzoneplan toegewezen.
- 1. Open de instellingen door dubbel te klikken op de vermelding van het SmartRelais 3 in de Matrix.
- 2. Ga naar de registerkaart [Configuratie / data].
- 3. Vink het volgende hokje aan: 🔽 tijdzonesturing.
- 4. Vink het volgende hokje aan: 🗹 tijdomschakeling.
- 5. Klik op de button Uitgebreide configuratie.
 - → Het venster "Uitgebreide configuratie" gaat open.

njugestuurue omschakeling		Tijdgestuurde omschakeling	
🗅 handmatige vergrendeling	 automatische vergrendeling 	C handmatige vergrendeling	automatische vergrendeling
handmatige ontgrendeling ansponder actief:	C automatische ontgrendeling	handmatige ontgrendeling transponder actief:	${f C}$ automatische ontgrendeling
Di altijd	 alleen indien vergrendeld 	C altijd	elleen indien vergrendeld
LED-uitschakelen Beeper uitschakelen		LED-uitschakelen	
eriële poort	geen 💌	seriële poort	geen 💌
Jitbreidingsmodule	1	Uitbreidingsmodule	
]1		
angungernmenterer			

- 6. Stel de opties in voor de automatische en handmatige bediening onder het menupunt "Tijdgestuurde omschakeling"volgens uw wensen in (zie *Uitgebreide configuratie zonder SmartOutput-module [•* 144] en *Uitgebreide configuratie met SmartOutput-modules [•* 145]).
- 7. Klik op de button OK .
- → Het venster gaat dicht.
- 8. Klik op de button overnemen.
- 9. Klik op de button beëindigen.
- → De tijdzonesturing en tijdomstelling zijn geactiveerd.

Activering in geautoriseerde/niet-geautoriseerde periode

De tijdomstelling wordt altijd geactiveerd voor het volgende volle kwartier. Wanneer de programmering gebeurt in de gedefinieerde periode, dan wordt de omstelling in de gedefinieerde periode pas uitgevoerd in het eerstvolgende volle kwartier. Mocht het tijdzoneplan tot dusver bepalen dat het SREL3-ADV-systeem op dit moment gesloten is en het nieuwe geprogrammeerde tijdzoneplan bepalen dat het SREL3-ADV-systeem op dit moment geopend moet zijn, dan zal het openen pas plaatsvinden vanaf het volgende volle kwartier.

- 1. Neem het systeem korte tijd van de voeding om de tijdomstelling onmiddellijk te activeren.
- 2. Verzeker dat er tot aan het volgende volle kwartier geen onbevoegde toegang mogelijk is.

Bewerken van het tijdzoneplan

Raadpleeg voor het bewerken van het tijdzoneplan het LSM Manual.

Ontgrendelen binnen de bevoegde periode (relaiscontacten sluiten)					
Automatisch ontgrer	ndelen	Handmatig ontgrendelen			
altijd	alleen indien ver- grendeld	altijd	alleen indien ver- grendeld		
Controller: sluit de relaiscontacten (ontgrendelt), zodra de autorisatie in het tijdzoneplan begint. Gedraagt zich in de resterende geauto- riseerde periode als FlipFlop.	Controller: sluit de relaiscontacten (ontgrendelt), zodra de autorisatie in het tijdzoneplan begint. Geen invloed door identificatiemedia in de resterende geau- toriseerde periode.	Controller: sluit de relaiscontacten (ontgrendelt), zodra een identificatieme- dium na begin van de autorisatie in het tijdzoneplan wordt bediend. Gedraagt zich in de resteren- de geautoriseerde periode als FlipFlop.	Controller: sluit de relaiscontacten (ontgrendelt), zodra een identificatieme- dium na begin van de autorisatie in het tijdzoneplan wordt bediend. Geen in- vloed door identifi- catiemedia in de resterende geauto- riseerde periode.		

10.11.1 Uitgebreide configuratie zonder SmartOutput-module
Vergrendelen in de niet geautoriseerde periode (relaiscontacten openen)			
Automatisch vergrendelen		Handmatig vergrendelen	
altijd	alleen indien ver- grendeld	altijd	alleen indien ver- grendeld
Controller: opent re- laiscontacten (ver- grendelt) zodra de autorisatie in het tijdzoneplan eindigt. Identificatiemedia sluiten de relaiscon- tacten (ontgrende- len) in de niet geau- toriseerde periode voor de ingestelde pulsduur.	Controller: opent re- laiscontacten (ver- grendelt) zodra de autorisatie in het tijdzoneplan eindigt. Identificatiemedia sluiten de relaiscon- tacten (ontgrende- len) in de niet geau- toriseerde periode voor de ingestelde pulsduur.	Controller: opent re- laiscontacten (ver- grendelt) zodra een identificatiemedium wordt bediend. Identificatiemedia sluiten de relaiscon- tacten (ontgrende- len) in de niet geau- toriseerde periode voor de ingestelde pulsduur.	niet mogelijk

10.11.2 Uitgebreide configuratie met SmartOutput-modules

Ontgrendelen binnen de bevoegde periode (relaiscontacten sluiten)				
Automatisch ontgrendelen Handmatig ontgrendelen				
altijd	alleen indien vergrendeld	altijd	alleen indien vergrendeld	

SmartRelais 3-systeem (Manual)

Ontgrendelen binnen de bevoegde periode (relaiscontacten sluiten)				
niet mogelijk	 Controller: sluit relaiscontacten (ontgrendelt) zodra de bevoegdheid in het tijdzoneplan begint. Geen beïnvloeding door identificatiemedia in de bevoegde periode. SmartOutput-module: sluit relaiscontacten (ontgrendelt) zodra de bevoegdheid in het tijdzoneplan begint. Geen beïnvloeding door identificatiemedia in de bevoegde periode. 	niet mogelijk	 Controller: sluit relaiscontacten (ontgrendelt) zodra het identificatiemedium na begin van de bevoegdheid in de periode geactiveerd wordt. Daarna geen beïnvloeding door identificatiemedia in de resterende bevoegde periode. SmartOutput-module: sluit relaiscontacten (ontgrendelt) zodra de bevoegdheid in het tijdzoneplan begint bij presentatie van een identificatiemedium. Geen beïnvloeding door identificatiemedia in de resterende bevoegde periode. 	
Vergrendelen in de niet bevoegde periode (relaiscontacten openen)				
Automatisch vergrendelen		Handmatig vergrendelen		

SmartRelais 3-systeem (Manual)

Vergrendelen in de niet bevoegde periode (relaiscontacten openen)			
altijd	alleen indien vergrendeld		
niet mogelijk	 Controller: opent relaiscontacten (vergrendelt) zodra de bevoegdheid in het tijdzoneplan afloopt. Identificatiemedia sluiten in de resterende bevoegde periode raliascontacten voor de ingestelde impulsduur. SmartOutput-module: opent relaiscontacten (vergrendelt) zodra de bevoegdheid in het tijdzoneplan afloopt. Identificatiemedia sluiten in de resterende bevoegde periode raliascontacten voor de ingestelde impulsduur. 	niet mogelijk	

10.12 Opening op afstand

U kunt het relais in de controller ook zonder identificatiemedia op elk gewenst moment met de LSM schakelen.

OPMERKING

Een afstandsbediening heeft voorrang boven de tijdzonesturing. Deze schakelt het relais ook wanneer de relaiscontacten volgens de tijdzonesturing geopend moeten blijven.

Afstandsbediening met USB-kabel

- ✓ De controller is al geprogrammeerd.
- ✓ Componenten naar behoren aangesloten (zie *Bedrading* [▶ 62]).
- Componenten van spanning voorzien.
- Kies via de | netwerk | de vermelding Activeren van het sluiting uit.
 → Het venster "netwerk-sluiting activeren" gaat open.

netwerk-sluiting activeren				\times
sluitsysteem: Deur / Sluiting:	Testprojekt Postfach / 07PKN1C		•	
bevestiging wachtwoord – úit de database over C ingave wachtwoord	nemen			
Programmeerapparaat:				
Туре:	USB-verbinding naar het TC	P-knooppunt	•	
Apparaat:	USB-Anschluß		•	
- actie				
	opening op afstand	(•		
	sluiting deactiveren	С		
	sluiting activeren	0		
uitvoeren			beëindigen	

- 2. Open het dropdownmenu ▼ Deur / Sluiting.
- 3. Kies de controller van het SREL3-ADV-systeem uit.
- 4. Open het dropdownmenu ▼ type.

5. Kies de vermelding "USB-verbinding naar het TCP-knooppunt" uit.

USB-verbinding naar het TCP-knooppunt	•
SmartCD TCP-knooppunt	
USB-verbinding naar het TCP-knooppunt	
SmartCD Mifare	

- 6. Open het dropdownmenu ▼ Apparaat.
- 7. Selecteer eventueel het IP-adres.
- 8. Selecteer de optie 💿 opening op afstand aus.
- 9. Klik op de button uitovoeren.
- → Het relais in de controller schakelt.
- → Het venster "programmering succesvol" wordt weergegeven.

Opening op afstand via TCP/IP

- ✓ De controller is al geprogrammeerd.
- ✓ Componenten naar behoren aangesloten (zie *Bedrading* [▶ 62]).
- ✓ Componenten van spanning voorzien.
- Kies via de | netwerk | de vermelding Activeren van het sluiting uit.
 → Het venster "netwerk-sluiting activeren" gaat open.

netwerk-sluiting activeren				\times
sluitsysteem: Deur / Sluiting: bevestiging wachtwoord	Testprojekt Postfach / 07PKN1C		▼	
uit de database overne	men			
C ingave wachtwoord				
Programmeerapparaat: Type: Apparaat:	TCP-knooppunt 192.168.100.113		•	
actie				
	opening op afstand	(•		
	sluiting deactiveren	0		
	sluiting activeren	0		
uitvoeren			beëindigen	

2. Open het dropdownmenu ▼ Deur / Sluiting.

- 3. Kies de controller van het SREL3-ADV-systeem uit.
- 4. Open het dropdownmenu ▼ type.
- 5. Kies de vermelding "TCP-knooppunt" uit.

TCP-knooppunt	-
SmartCD	
TCP-knooppunt	
USB-verbinding naar het TCP-knooppunt	
SmartCD Mifare	

- 6. Open het dropdownmenu ▼ Apparaat.
- 7. Selecteer eventueel het IP-adres.
- 8. Selecteer de optie 💿 opening op afstand aus.
- 9. Klik op de button uitovoeren.
- → Het relais in de controller schakelt.
- → Het venster "programmering succesvol" wordt weergegeven.

10.13 Firmware-update

Producten van SImonsVoss worden altijd up-to-date gehouden en verzorgd. Om nieuwe functies vrij te schakelen, kan het nodig zijn een nieuwe firmware-versie te installeren.

Firmware-updates zijn complex. Hiervoor is gedetailleerde vakkennis nodig. Neem voor het uitvoeren van firmware-updates dan ook contact op met onze Support (zie Hulp en contact). Eventueel moet de controller gereset worden.

LET OP

"Bricking" door onderbreking van de firmware-update

De firmware is ook verantwoordelijk voor het resetten. Wanneer de firmware slechts gedeeltelijk is geprogrammeerd en de procedure werd onderbroken (onderbreken van de verbinding of uitval van de stroomverzorging), dan kan mogelijk niet meer met het apparaat gecommuniceerd worden of een reset uitgevoerd worden (bekend als "Bricking").

- 1. Controleer dat de stroomverzorging tijdens de firmware-update stabiel is.
- 2. Controleer dat de stroomverzorging tijdens de firmware-update niet onderbroken wordt.
- 3. Controleer dat de verbinding tijdens de firmware-update niet onderbroken wordt.

10.14 Gebeurtenissen

10.14.1 Controller-inputs analyseren

De digitale ingangen op de controller van het SREL3-ADV-systeem kunnen doorgevoerd worden naar de LSM om daar bepaalde handelingen te activeren.

Gebeurtenis aanmaken

Wanneer u een input door de LSM of door SmartSurveil (zie *SmartSurveil* [> 153]) wilt laten beoordelen, moet u de betreffende input eerst als gebeurtenis aanmaken in de LSM. Pas daarna worden wijzigingen van de input ook bewaard in de LSM-database.

- ✓ LSM actief.
- ✓ SREL3-ADV-systeem in de Matrix aangelegd.
- Kies via de | netwerk | de vermelding gebeurtenismanager uit.
 → Het venster "netwerkgebeurtenis manager" gaat open.
- 2. Klik op de button nieuw.
 - → Het venster "nieuwe gebeurtenis" gaat open.

nieuwe gebeurtenis			×
naam: beschrijving: melding: type:	Input gebeurtenis ▼ gebeurtenis configureren	sluitingen:	uitkiezen
bijbehorende acties: toevoegen Verwijderen nieuw		⊂alamniveau	
ОК	tijd configureren		afbreken

- 3. Geef een naam aan voor de gebeurtenis (event).
- 4. Geef optioneel een beschrijving aan voor de gebeurtenis (event).
- 5. Voer optioneel een melding in.
- 6. Open het dropdownmenu ▼ type.

7. Kies de vermelding "input gebeurtenis" uit.

input gebeurtenis	·
Door Monitoring gebeurtenis	
Input event analoog	
input gebeurtenis	
tijdinterval	
toegang	
toetsencombinatie	

- 8. Klik op de button gebeurtenis configureren.
 - → Het venster "input gebeurtenis" gaat open.

input gebeurtenis	\times	
de inputs van een lock-node moeten als volgt in acht genomen worden:		
input uitkiezen		
Input 1		
C input 2		
C Input 3		
input past zich aan		
van 0 op 1		
C van 1 op 0		
C beide		
OK afbreker		

- 9. Kies in het menupunt "input uitkiezen" de gewenste input uit.
- 10. Kies in het menupunt "input past zich aan" de statuswijzinging uit die het gevolg moet zijn van de gebeurtenis.
- 11. Klik op de button OK.
- 12. Klik op de button uitkiezen , om de gebeurtenis toe te wijzen aan een sluitelement.
 - → Het venster "Beheer" gaat open.
- 13. Markeer één of meerdere sluitelementen.
- 14. Klik op de button 🛛 toevoegen .
- 15. Klik op de button OK .
 - → Het venster gaat dicht.
 - → Het sluitelement is toegewezen aan de gebeurtenis.
- 16. Wanneer u een handeling wilt vastleggen, kunt u met de button nieuw resp. toevoegen een bepaalde handeling toewijzen.

- 17. Klik op de button OK .
 - → Het venster gaat dicht.
 - ➡ De gebeurtenis wordt in het menupunt "gebeurtenissen" weergegeven.
- 18. Klik op de button beëindigen.
 - → Het venster gaat dicht.
- → De input is nu als gebeurtenis aangelegd en activeert afhankelijk van de instelling een bepaalde handeling.

10.14.2 SmartSurveil

SmartSurveil is een op zichzelf staand programma dat de bewaking van deurstatussen makkelijker maakt. Gebeurtenissen die worden herkend door netwerkcompatibele apparaten worden door zulke apparaten via de CommNode-server opgeslagen in de LSM-database. SmartSurveil bewaakt de LSM-database permanent op veranderingen en geeft de actuele stand van de bewaakte sluitelementen in het netwerk aan.

De controller van het SREL3-ADV-systeem is een apparaat in een netwerk en kan ook worden bewaakt door SmartSurveil. Hierbij geldt één bijzonderheid: de controller is geen sluitelement en kan dan ook niet zelfstandig de status van de sluiting herkennen. In plaats hiervan worden de inputs bij de digitale ingangen beoordeeld en kunnen in SmartSurveil worden weergegeven met "open", "afgesloten" of "dicht". Hiervoor moet SmartSurveil echter worden geconfigureerd:

- ✓ gebeurtenissen voor te bewaken inputs in de LSM geconfigureerd (zie Controller-inputs analyseren [▶ 151]).
- ✓ SmartSurveil verbonden met de databank.
- Gebruiker aangemeld in SmartSurveil.
- Controller van het SREL3-ADV-systeem wordt weergegeven.
- 1. Ga naar de registerkaart [Deuren].
- 2. Klik op de button Instellingen.
 - → Het venster "SmartSurveil: Instellingen" gaat open.

SmartRelais 3-systeem (Manual)

Smart.Surveil : Instellingen	×
Schrijfbeveiliging ✓ Bewerking aan iedereen toegestaan ✓ Bewerking is geactiveerd	
LockNode-Inputs ✓ Inputs als DoorMonitoring Events beoordelen deur is gesloten Input 1 Waarde 1 deur is vergrendeld Input 2 Waarde 1	
ОК	

- 3. Activeer de optie 🔽 Inputs als DoorMonitoring Events beoordelen.
- 4. Open het dropdownmenu ▼ deur is gesloten.
- 5. Selecteer de input die bewaakt of een deur dicht is.

- 6. Open het dropdownmenu ▼ Waarde.
- 7. Kies de toestand van de inputs waaraan SmartSurveil moet herkennen dat deze "dicht" is.

- 8. Open het dropdownmenu ▼ deur is vergrendeld.
- 9. Selecteer de input die bewaakt of een deur afgesloten is.

10. Open het dropdownmenu ▼ Waarde.

11. Kies de toestand van de inputs waaraan SmartSurveil moet herkennen dat deze "afgesloten" is.

- 12. Klik op de button OK.
 - → Het venster gaat dicht.
- SmartSurveil is geconfigureerd voor monitoring van het SREL3-ADVsysteem.

OPMERKING

Een deur kan door SmartSurveil alleen als afgesloten worden herkend, wanneer deze daarvoor als dicht is herkend.

OPMERKING

Deze instellingen gelden voor alle SREL3-ADV-systemen die in de LSM-databank verbonden zijn.

Meer informatie over SmartSurveil kunt u vinden in het SmartSurveilmanual.

10.15 Tips

10.15.1 Eerste programmering via TCP/IP

Bij sommige toepassingen is het nodig eerst de controller in te bouwen en daarna het adres te programmeren (vooraf geïnstalleerde lezers). Eventueel is de controller na de inbouw niet meer bereikbaar met een USBkabel. Voor de eerste programmering via TCP/IP is echter een in de controller bewaard en in de LSM bekend IP-adres nodig.

Dit probleem is te voorkomen door de controller onafhankelijk van andere componenten voor het eerst via een USB-kabel te programmeren. Hierbij wordt een geldig IP-adres toegekend en in de controller bewaard. Daarna wordt de controller gereset, waarbij het IP-adres behouden blijft.

Eerste programmering via USB-kabel met toewijzing van een adres

Voer een eerste programmering uit volgens de beschrijving in *Configuratie* [\triangleright 25].

OPMERKING

In dit geval is het niet nodig externe componenten aan te sluiten.

Resetten van de controller

Reset de controller volgens de beschrijving in *Controller met USB-kabel resetten* [+ 35].

Inbouwen van de controller

Bouw de controller in op de definitieve plaats van gebruik. Sluit de controller aan op de overige componenten en de stroomverzorging (zie *Bedrading [• 62]*).

Programmering via TCP/IP

Voer een programmering uit via het eerder toegewezen TCP/IP-adres (zie *Programmering* [\blacktriangleright 31]).

Het SREL3-ADV-systeem is nu gebruiksklaar.

10.15.2 Verschillende rechten op transponders

Een transponder met een geïntegreerde Mifare-chip vormt logisch gezien zowel voor de LSM als voor het SREL3-ADV-systeem twee verschillende identificatiemedia. U kunt gebruik maken van deze eigenschap om met dezelfde transponder verschillende uitgangen op de controller en de SmartOutput-modules te schakelen, door de Mifare-chip andere rechten te geven dan de transponder zelf.

- ✓ De controller is al geprogrammeerd.
- ✓ Componenten naar behoren aangesloten (zie *Bedrading* [▶ 62]).
- Componenten van spanning voorzien.
- ✓ De Matrix van het betreffende sluitsysteem is geopend.
- 1. Klik op de button Nieuwe transponder .

→ Het venster "Nieuwe transponder" gaat open.

SmartRelais 3-systeem (Manual)

Sluitsysteem	Testpro	ojekt	-	·	
Transpondergroep	[Systee	mgroep]	▼		
type	G2-tran	sponder	-	·	geldigheidbereik
bezitter	geen		-	-	Configuratie
	🗌 Bezi	tters zonder toege	wezen transpond	er weergeve	n
Serienummer	T-0000	1	Auto 🖡	7	
Beschrijving				_	
ersoneelsnummer	P-0000	6	Auto 🔽		
Personeelsnummer Achternaam Voornaam afdeling	P-0000	6	Auto 🔽		
Personeelsnummer Achternaam Voomaam afdeling adres elefoon	P-0000	6	Auto 🔽		
Personeelsnummer Achternaam Voornaam afdeling adres elefoon Extra transpondergroepen	P-0000	6 nspondergroep	Auto 🔽	niveau	

- 2. Open het dropdownmenu ▼ type.
- 3. Kies de vermelding "G2-kaart" uit.

G2-kaart	•
G1-biometrie	
G1-gebruiker biometrische lezer	
G1-kaart	
G1-Pin Code	
G1-Smart Clip	
G1-transponder	
G2-kaart	
G2-PIN-code gebruikers	
G2-transponder	
ongedefineerd	

- 4. Vul het formulier in.
- 5. Klik op de button Opslaan & Verder .

- 6. Open het dropdownmenu ▼ type.
- 7. Kies de vermelding "G2-transponder".

G2-transponder	•
G1-biometrie	
G1-gebruiker biometrische lezer	
G1-kaart	
G1-Pin Code	
G1-Smart Clip	
G1-transponder	
G2-kaart	
G2-PIN-code gebruikers	
G2-transponder	
ongedefineerd	

- 8. Vul het formulier in.
- 9. Klik op de button Opslaan & Verder .
- 10. Klik op de button beëindigen .
 - → Het venster gaat dicht.
- 11. Verstrek de gewenste rechten.
- 12. Klik op de button "Overnemen".

Þ

- 13. Programmeer de Mifare-chip (zie LSM-manual).
- 14. Programmeer de transponder (zie LSM-manual).
- ➡ Wanneer de Mifare-chip wordt gebruikt voor aanmelding bij de lezer, worden alleen de relais waarvoor de Mifare-chip bevoegd is geschakeld.
- ➡ Wanneer de transponder wordt gebruikt voor aanmelding bij de lezer, worden alleen de relais waarvoor de transponder bevoegd is geschakeld.

10.15.3 Signalering voor FlipFlop

De signalering van de lezer in het SREL3-ADV-systeem geeft niet aan, of de deur in de FlipFlop-modus dicht of geopend is. Desondanks kan de gebruikers getoond worden of de deur geopend, dan wel gesloten is. Hiervoor wordt gebruik gemaakt van de relaisuitgang om de stroomverzorging van de signalering te schakelen. Wanneer bijvoorbeeld een deuropener stroom heeft en opent, dan wordt de stroomverzorging door het relais geschakeld. Dezelfde (geschakelde) stroomverzorging kan voor een willekeurige signalering (led, gloeilamp e.d.) worden benut.

SmartRelais 3-systeem (Manual)

Het is zelfs mogelijk om een actuator (deuropener) te signaleren die onder stroom sluit. Hierbij wordt gebruik gemaakt van het feit dat het relais in de controller een NC- en een NO-contact biedt. De pluspool van de stroomverzorging voor de deuropener wordt aan het gemeenschappelijke contact aangesloten en de pluspool voor de actuator aan het NC-contact. De pluspool van de signalering wordt aan het NO-contact aangesloten. Wanneer het relais schakelt, wordt de actuator aan het NC-contact niet meer van spanning voorzien en gaat de deur open. Tegelijkertijd sluit het NO-contact en verzorgt de signalering met spanning.

11. Signalering

U kunt de signalering instellen (zie *Signaleringsinstellingen* [> 121]). Wanneer u de openingsstatus in de FlipFlop-modus wilt weergeven, kunt u gebruik maken van het relais (zie *Signalering voor FlipFlop* [> 158]).

De volgende tabel beschrijft de signalering van de firmware > 1.1.296.

Configuratie: Gateway en relais					
	Relais bevoegd	Relais niet bevoegd			
Catoway actiof	· ☆	۲̈́Ċ			
Caleway actien	↓ » open	」			
Gateway actief, fout bij	·Å·	۲̈̈́			
overdracht	口ミ	」			
Gateway niet actief	· ☆ ■ open	·Ç			
	↓ » open	្សា			

12. Onderhoud

12.1 Batterij-alarm

De ingebouwde back-up batterij in de controller voorziet de realtime klok bij uitval van de stroomverzorging van stroom. Wanneer de back-up batterij leeg is, blijft de realtime klok bij uitval van de stroomverzorging stilstaan. Dit kan leiden tot verkeerd functioneren en problemen. Daarom moet de batterij regelmatig gecontroleerd worden. U kunt de batterijstatus via een USB-verbinding of via het netwerk opvragen.

12.1.1 Batterijstatus uitlezen met USB-kabel

- ✓ Componenten van spanning voorzien.
- ✓ Controller met USB-kabel op pc aangesloten.
- ✓ De te controleren batterij is geplaatst.
- 1. Markeer in de Matrix de invoer van de controller van het SmartRelais 3.
- 2. Kies via de | programmering | de invoer Geselecteerde sluiting uitlezen / klok instellen uit.

program	mering	netwerk	Opties	Venster	Help		
tran Sluit	sponder ting					Ctrl+Shift+T Ctrl+Shift+L	
Ges	electeerd	le sluiting u	uitlezen /	klok inste	llen	Ctrl+Shift+K	
Sluit Mifa tran G1 k G2 k Sluit bijze	ting uitle are sluitin sponder caart uitle caart uitle ting uitle ondere fu	ezen ng uitlezen uitlezen ezen ezen ezen via USI uncties	8			Shift+U Ctrl+Shift+B Ctrl+Shift+R Ctrl+Shift+E Ctrl+Shift+F	>
noo	dopenin	g uitvoerer	ı				
Sma Sma	artCD tes artCD Mi	ten fare testen					
LSM	I Mobile						>

→ Venster "Sluiting uitlezen" gaat open.

Sluiting uitlezen		×
sluitsysteem:	Testprojekt	•
Programmeerapparaat:	Prostrach / U/PKN IC	
Туре:	USB-verbinding naar het TCP-knooppunt	•
Apparaat:	USB-Anschluß	-
uitlezen	tijd stellen	beëindigen

- 3. Open het dropdown-menu ▼ type.
- 4. Kies de invoer "USB-verbinding naar het TCP-knooppunt" uit.

USB-verbinding naar het TCP-knooppunt	-
SmartCD TCP-knooppunt	
USB-verbinding naar het TCP-knooppunt	
SmartCD Mifare	

- 5. Klik op de button uitlezen.
 - → Het sluitelement wordt uitgelezen.
- → De batterijstatus wordt in het menupunt "status" weergegeven.
- → De batterijstatus wordt in de eigenschappen in de registerkaart [status] in het menupunt"Status bij de laaste uitlezing" weergegeven.

12.1.2 Batterijstatus uitlezen via het netwerk

- Componenten van spanning voorzien.
- ✓ De controller is via een netwerk verbonden met de pc.
- ✓ De te controleren batterij is geplaatst.
- 1. Markeer in de Matrix de invoer van de controller van het SmartRelais 3.

2. Kies via de | programmering | de invoer Geselecteerde sluiting uitlezen / klok instellen uit.

progra	mmering	netwerk	Opties	Venster	Help		
tr	ansponder					Ctrl+Shift+T	
S	luiting					Ctrl+Shift+L	
G	eselecteerd	le sluiting u	iitlezen /	klok inste	llen	Ctrl+Shift+K	
S	luiting uitle	zen				Shift+U	
N	lifare sluitir	ng uitlezen				Ctrl+Shift+B	
tr	ansponder	uitlezen				Ctrl+Shift+R	
G	1 kaart uitle	ezen				Ctrl+Shift+E	
G	2 kaart uitle	ezen				Ctrl+Shift+F	
S	luiting uitle	zen via USE	3				
b	ijzondere fu	uncties					>
n	oodopenin	g uitvoerer	n				
S	martCD tes	ten					
S	martCD Mi	fare testen					
Ľ	SM Mobile						>

→ Venster "Sluiting uitlezen" gaat open.

Sluiting uitlezen		\times
sluitsysteem:	Testprojekt	•
Deur / Sluiting:	Postfach / 07PKN1C	•
Programmeerapparaat:		
Type:	TCP-knooppunt	-
Apparaat:	192.168.100.113	-
uitlezen	tijd stellen beëind	igen

3. Open het dropdown-menu ▼ type.

4. Kies de invoer "TCP-knooppunt" uit.

- 5. Klik op de button uitlezen.
 - → Het sluitelement wordt uitgelezen.
- → De batterijstatus wordt in het menupunt "status" weergegeven.
- → De batterijstatus wordt in de eigenschappen in de registerkaart [status] in het menupunt"Status bij de laaste uitlezing" weergegeven.

12.2 Batterijvervanging

OPMERKING

Kortere levensduur van de batterij door slecht contact

Huidvet vermindert het contact tussen de batterij en de batterijhouder.

- 1. Raak de contacten van de nieuwe batterijen niet met de handen aan.
- 2. Gebruik schone, vetvrije katoenen handschoenen.

Verwijder de batterijen als afval volgens de lokale en specifieke nationale voorschriften.

- Controller gescheiden van de stroomverzorging.
- 1. Druk de behuizing van de controller op het aangegeven punt in en til de afdekking omhoog.

 \mapsto De behuizing is geopend.

2. Druk met een schroevendraaier de vergendeling van de batterij opzij totdat deze eruit springt.

- └→ De batterij ligt los in de houder.
- 3. Neem de batterij eruit.
- Leg een nieuwe geschikte batterij los op de houder (zie *Controller* [▶ 174]).

- 5. Druk de batterij voorzichtig naar beneden, totdat deze vastklikt.
 - → De batterij is geplaatst.
- 6. Zet de afdekking weer terug op de behuizing.
- 7. Duw de afdekking naar beneden, totdat deze vastklikt.
- → De batterij is vervangen.

Onder bepaalde omstandigheden kunnen nieuwe batterijen niet onberispelijk zijn (leeftijd, foutieve charge, ...). U kunt na het vervangen de batterijstatus via de LSM uitlezen (zie *Batterij-alarm* [+ 162]).

LET OP

Onderbreking van de stroomverzorging van de RTC

Wanneer de batterij en de normale stroomverzorging gescheiden worden, wordt de interne realtime klok (Real Time Clock, RTC) niet meer van stroom voorzien. Na het herstellen van de stroomverzorging klopt de klok niet meer en worden de rechten die in het tijdzoneplan bewaard zijn niet meer op de beoogde momenten actief.

 Voer een programmering van de controller uit (zie *Programmering* [> 31]).

13. Oplossen van fouten

13.1 Componenten resetten

U kunt de controller resetten (zie *Controller resetten [> 34]*).

|--|

OPMERKING

Alleen de hardware-instellingen en passagelijsten op de controller worden gereset. De IP-instelling blijft behouden!

In de LSM kan een Software-Reset worden uitgevoerd (zie *Software-Reset* [+ 142]).

13.2 Fout bij de overdracht

Niet beschikbare dienst

Een vaak optredende oorzaak voor fouten bij de overdracht bij het programmeren is een ontbrekende of beëindigde dienst. Controleer of de dienst actief is.

- Wanneer u een virtueel netwerk gebruikt, moet de VNHost-server draaien.
- Als u het SmartRelais inzet in een netwerk en input analyseert, moet de CommNodeServer draaien.

Wanneer u hiervan niet zeker bent, controleert u beide diensten:

- ✓ De controller is al geprogrammeerd.
- ✓ Componenten naar behoren aangesloten (zie *Bedrading* [▶ 62]).
- ✓ Componenten van spanning voorzien.
- 1. druk op de Windows-toets.
- 2. Voer *services* in.
- 3. Open de aangegeven vermelding in het contextmenu met de rechtermuistoets.
- 4. Kies de vermelding Als administrator uitvoeren uit.

Als administrator uitvoeren

- D Bestandslocatie openen
- -⇔ Aan Start vastmaken
- Aan taakbalk vastmaken

- 5. Voer eventueel uw gebruikersnaam en uw wachtwoord in.
 - → Het Windows-venster "Services" gaat open.
- 6. Zoek naar de volgende diensten: SimonsVoss CommNode Server en/of SimonsVoss VNHost Server.
- 7. Controleer de status van de diensten.
- 8. Wanneer de diensten niet uitgevoerd worden, open dan het contextmenu van de diensten met de rechtermuistoets.
- 9. Kies de vermelding Starten uit.

Starten	
Stoppen	
Onderbreken	
Doorgaan	
Opnieuw starten	
Alle taken	>
Vernieuwen	
Eigenschappen	
Help	

- → De dienst wordt opgestart.
- 10. Voer een programmering uit (zie *Programmering* [> 31]).
- → De controller is geprogrammeerd.

IP-configuratiefout

Een andere mogelijke oorzaak voor fouten in de overdracht bij het programmeren is een fout in de IP-configuratie in het SmartRelais (herkenbaar aan langdurige pogingen tot uitlezen van weergaven in de foutmelding).

In dit geval wijst u een nieuwe IP-adres toe in de LSM en voert u een programmering via een USB-kabel uit.

- ✓ LSM opgestart.
- ✓ Controller met USB-kabel op pc aangesloten.
- ✓ Componenten naar behoren aangesloten (zie *Bedrading* [▶ 62]).
- ✓ Componenten van spanning voorzien.
- 1. Open de instellingen door dubbel te klikken op de vermelding van het SmartRelais 3 in de Matrix.
- 2. Ga naar de registerkaart [IP-instellingen].
- 3. Voer een ander vrij IP-adres in (om een vrij IP-adres te vinden, raadpleegt u *IP-instellingen bepalen* [▶ 29]).
- 4. Klik op de button overnemen.

- 5. Klik op de button beëindigen.
- 6. Voer een programmering via een USB-kabel uit (zie *Programmering* [▶ 31]).
 - → Het venster "programmering succesvol" wordt weergegeven.

programmering		
	succesvol	•
	programmering succes	vol
	ОК	

→ De IP-configuratiefout is verholpen.

13.3 Continu schakelen van het relais in de SmartOutput-module

Een mogelijke oorzaak van continu gesloten relaiscontacten in de SmartOutput-module kan het gebruik van de tijdzonesturing voor de tijdomstelling zijn.

LET OP

Onopzettelijk openen door gebruik met de SmartOutput-module

Het openingsgedrag met de SmartOutput-module in combinatie met een tijdzonesturing is afwijkend van het openingsgedrag zonder SmartOutputmodule.

Alle relais van de SmartOutput-module worden geschakeld.

- Raadpleeg de hoofdstukken Uitgebreide configuratie met SmartOutput-modules [> 145] en Uitgebreide configuratie zonder SmartOutput-module [> 144].
- 1. Schakel de tijdomstelling uit.
- 2. Voer een programmering uit (zie *Programmering* [▶ 31]).

13.4 Problemen met input of het uitlezen/programmeren van het netwerk

Wanneer de controller of de LSM niet reageren op input, of het uitlezen en programmeren via het netwerk mislukken, dan kan het zijn dat de diensten niet naar behoren functioneren. Ga in dit geval als volgt te werk.

Start de diensten opnieuw op

- ✓ De controller is al geprogrammeerd.
- ✓ Componenten naar behoren aangesloten (zie *Bedrading* [▶ 62]).
- ✓ Componenten van spanning voorzien.
- 1. druk op de Windows-toets.
- 2. Voer *services* in.
- 3. Open de aangegeven vermelding in het contextmenu met de rechtermuistoets.
- 4. Kies de vermelding Als administrator uitvoeren uit.

G Als administrator uitvoeren

- D Bestandslocatie openen
- -⇔ Aan Start vastmaken
- -⇔ Aan taakbalk vastmaken
- 5. Voer eventueel uw gebruikersnaam en uw wachtwoord in.
 - → Het Windows-venster "Services" gaat open.
- 6. Zoek naar de volgende diensten: *SimonsVoss CommNode Server* en/of *SimonsVoss VNHost Server*.
- 7. Open het contextmenu van de diensten met de rechtermuistoets.
- 8. Kies de vermelding Opnieuw starten uit.

Config-bestanden opnieuw schrijven

Het kan nodig zijn dat u de config-bestanden opnieuw schrijft. Roep hiervoor via de LSM het betreffende communicatieknooppunt op en schrijf de config-bestanden opnieuw.

13.5 Tijdomstelling reageert niet op wijziging

Wanneer de tijdomstelling niet reageert op wijzigingen in het tijdzoneplan, dan kan een mogelijke oorzaak hiervoor zijn dat de wijzigingen niet zijn uitgevoerd in Groep 5 van het tijdzoneplan, of zijn toegewezen aan een ander tijdzoneplan.

- 1. Controleer dat u het tijdzoneplan hebt bewerkt dat is toegewezen aan het SREL3-ADV-systeem.
- 2. Controleer ook dat u Groep 5 hebt bewerkt.

14. Technische gegevens

14.1 Bestelnummers

Controller

SREL3.CTR.ADV.G2	Controller voor het SREL3-ADV-sys- teem (standaardversie)
SREL3.CTR.ADV.ZK.G2	Controller voor het SREL3-ADV-sys- teem (versie met tijdzonemanage- ment en protocollering)

LED-lezer

SREL3.EXT2.G2.GY	LED-lezer voor het SREL3-ADV-sys- teem (antraciet, standaardversie)
SREL3.EXT2.G2.GY.COVER	LED-lezer voor het SREL3-ADV-sys- teem (antraciet, standaardversie met frame voor vandalismebe- scherming)
SREL3.EXT2.G2.GY.WP	LED-lezer voor het SREL3-ADV-sys- teem (antraciet, versie met spatbe- scherming)
SREL3.EXT2.G2.GY.WP.COVER	LED-lezer voor het SREL3-ADV-sys- teem (antraciet, versie met spatwa- terbescherming en vandalismebe- stendig frame)
SREL3.EXT2.G2.W	LED-lezer voor het SREL3-ADV-sys- teem (wit, standaardversie)
SREL3.EXT2.G2.W.COVER	LED-lezer voor het SREL3-ADV-sys- teem (wit, standaardversie met fra- me ter bescherming tegen vandalis- me)
SREL3.EXT2.G2.W.WP	LED-lezer voor het SREL3-ADV-sys- teem (wit, spatwaterdichte versie)
SREL3.EXT2.G2.W.WP.COVER	LED-lezer voor het SREL3-ADV-sys- teem (wit, versie met spatwaterbe- scherming en vandalismebestendig frame)

Lezer

SREL3.EXT.G2.W	Lezer voor het SREL3-ADV-systeem (standaardversie)
SREL3.EXT.G2.W.WP	Lezer voor het SREL3-ADV-systeem (versie met spatwaterbescherming)

SmartOutput-module

MOD.SOM8	SmartOutput-module (standaard-
	versie)

Toebehoren

POWER.SUPPLY.2	Voedingseenheid (12 V_{DC} , 500 mA)
SREL2.COVER1	Behuizing ter bescherming tegen vandalisme
SREL3.COVER.GY	Vandalismebestendig frame voor LED-lezer, antraciet
SREL3.COVER.W	Vandalismebestendig frame voor LED-lezer, wit

14.2 Eigenschappen

14.2.1 Controller

Behuizing		
Materiaal	ABS-kunststof, UV-stabiel	
Kleur	Gelijk met RAL 9016 (verkeerswit)	
Beschermings- klasse	IP20	
Leidingsteeveer	Inbouwmontage	
Leidingstoevoer	Opbouwmontage	
Stroomverzorging		
(er hoeft alleen een stroomverzorging aangesloten te worden)		
	■ V _{IN} : 9 V _{DC} – 32 V _{DC} (De stroomvoorziening moet beperkt zijn tot 15 W)	
Schroefklemmen	Verbruik: max. 3 W	
	Ompolingsbeveiliging: ja	
	De max. stroom is afhankelijk van de stroomverzorging en de activiteit van de controller.	

	■ V _{IN} : 9 V _{DC} - 32 V _{DC}	
	Verbruik: max. 3 W	
Ronde stekker	 Afmetingen: ≥ 2,0 mm binnen-Ø (aanbevolen: 2,1 mm of 2,5 mm) en ≤ 5,5 mm buiten-Ø (aanbevolen: 5,5 mm) 	
	De max. stroom is afhankelijk van de stroomverzorging en de activiteit van de controller.	
	EEE 802.3af conform	
	Compleet geïsoleerd	
	■ V _{IN} : 36 V _{DC} bis 57 V _{DC}	
Dowerover	 Benodigd PoE-budget: max. 10 W (bevat max. drie door de controller verzorgde lezers) 	
Ethernet (PoE)	met rode led gesignaleerd	
	De PoE-stroomverzorging wordt door een spannings- omvormer aangepast naar 13 V_{DC} . Wanneer u op de schroefklemmen of de ronde stekker een hogere stroomverzorging aansluit dan 13 V_{DC} , zal de controller via de PoE-interface geen spanning ontvangen, maar via de stroominput met de hoogste spanningstoevoer.	
Uitgangen	3 uitgangen voor verzorging van externe lezers $(V_{OUT} = V_{IN} - 1 V_{DC})*$	
Batterij		
	1x lithiumcel CR1220 (3 V, 40 mAh)	
Туре	Fabrikanten: Duracell, Murata, Panasonic, Varta. Batte- rijen bedekt met bitterstoffen zijn niet geschikt.	
Vervangbaar	Ja	
	■ > 10 jaar (inactief)	
	■ > 2 jaar (actief)	
Gebruiksduur	Batterijstatus kan via LSM opgevraagd worden. Batterij wordt niet gebruikt zolang de controller is aangesloten op de stroomverzorging.	
Realtime clock (RTC)		
Nauwkeurigheid	max. ± 20 ppm (≈ 10 minuten per jaar)	
Omgevingsvoorwaarden		
Temperatuurbe-	■ -25 °C tot +60 °C (in bedrijf)	
reik	■ 0 °C tot +30 °C, (opslag > 1 week)	

Luchtvochtigheid	max. 90% zonder condensatie	
Interfaces		
	Eigenschappen: HP Auto_MDIX, DHCP Client, IPv4	
	■ 10Base-T-/100Base-T-Standard	
TCP/IP	TCP-Server: telkens 1x op poort 9760 en 9770	
	 IP-adres vrij programmeerbaar, voorinstelling; 169.254.1.1 	
	Aansluitingen: RJ45	
	■ High-Speed-USB	
	Vendor ID: 0x2AC8, Product ID: 0x101	
	Apparaat uit de HID-klasse	
	Aansluitingen: Mini-B	
	Fungeert als interface naar externe lezers (SREL3.EXT.*) en andere busapparaten.	
	Aansluitingen: 3	
R5485	Baud: 1 MBd	
	Lengte: ≤ 150 m, abs. max. 300 m (afhankelijk van firmware en kabel)	
Signalering		
	IRGB	
	I rood	
Programmering		
	TCP/IP	
	USB	
Interfaces	 externer lezer (ondersteuning afhankelijk van firmware) 	
	LNI (ondersteuning afhankelijk van firmware)	
Geheugen	SD-kaart (geheugen: ≥ 2 GB. SD-kaart mag niet wor- den verwijderd of vervangen!)	
Invoeren in de toegangslijst	Max. 1499 toegangen	
Relais		

Hoeveelheid	2x, onafhankelijk van elkaar programmeerbaar (onder- steuning van het tweede relais afhankelijk van firmwa- re)	
	Programmeerbaar.	
Schakelmodi	Monoflop	
	■ FlipFlop	
Schakelduur	Programmeerbaar van 0 tot 25 sec.	
Wijze van con-	Ix NO	
tact	IX NC	
Schakelspanning	30 V_{DC} (ohm belasting), 24 V_{AC}	
Schakelstroom	max. 200 mA (ohm belasting)	
Digitale ingangen		
Hoeveelheid	4	
Nivoau	■ Low: 0 V _{DC} bis 0,5 V _{DC}	
	■ High: 4 V _{DC} tot max. 30 V _{DC}	
Extern contact	Dient voor de aansluiting van externe apparaten. Een potentiaalvrij contact kan tussen de ingangen (I1, I2 of I3) en de I+-aansluiting worden aangesloten.	
Digitale uitgangen		
Hoeveelheid	4	
Туре	Open-Drain	
Schakelspanning	30 V (ohm belasting)	
Schakelstroom	max. 200 mA (ohm belasting)	
Stroomverzor- ging	Voor de stroomverzorging is aansluiting O+ beschik- baar. Een externe pull up-weerstand (ca. 1-10 k Ω) kan tussen de digitale uitgangen (O1, O2, O3 of O4) en O+ worden aangesloten.	
Seriële TC-interface		

		■ Wiegand 33-bit
		■ Wiegand 26-bit
		Primion
	Ondersteunde	Siemens Cerpass
	p	👪 Kaba Benzing
		Gantner Legic
		Isgus
	Elektrische speci- ficaties	Zie digitale uitgangen.

LET OP

*) Onderspanning bij de lezer bij PoE-verzorging

Wordt de controller gevoed via Po, dan brengt een spanningsomvormer de PoE-stroomverzorging omlaag tot 13 V. Deze spanning is beschikbaar voor de voeding van de aangesloten lezers en is mogelijk niet voldoende voor lange kabels of te kleine diameters om een probleemloze werking van de lezer te garanderen. (zie ook*Informatie over de bedrading [• 184]*). Neem de volgende maatregelen:

- 1. gebruik een externe voedingseenheid voor de lezer.
- 2. gebruik een externe voedingseenheid voor de controller, waarvan de spanning duidelijk boven 13 V_{DC} ligt, om de interne stroomverzorging te verhogen. Dit verhoogt ook de voedingsspanning voor de lezer en het spanningsverlies op de leiding heeft geen effect meer.
- 3. Maak de kabel korter.
- 4. Kies een grotere kabeldiameter.

14.2.2 Lezer

Behuizing	ehuizing	
Materiaal	ABS-kunststof, UV-stabiel	
Kleur	Gelijk met RAL 9016 (verkeerswit)	
Beschermings-	IP20	
	IP65 bij WP-variant	
	Tegen vandalisme beschermde behuizing leverbaar	
Leidingstoevoer	Inbouwmontage	
Stroomverzorging		

1		
■ V _{IN} : 9 V _{DC} beperkt z	₂ – 32 V _{DC} (De stroomvoorziening moet zijn tot 15 W)	
Sebre dule second	max. 3 W	
Schroetklemmen # Ompolin	gsbeveiliging: ja	
De max. stro en de activit	oom is afhankelijk van de stroomverzorging eit van de lezer.	
Gevoed door Controller	ria doorverbonden stroomverzorging van de	
controller De max. stro en de activit	oom is afhankelijk van de stroomverzorging reit van de lezer.	
Omgevingsvoorwaarden		
Temperatuurbe- 🚦 -25 °C to	ot +60 °C (in bedrijf)	
reik 🛛 🗰 0 °C tot	+30 °C, (opslag > 1 week)	
Luchtvochtigheid max. 90% z	onder condensatie	
Interfaces		
Fungeert als SREL3-ADV	s interface naar de controller van het '-systeem.	
RS485 🚦 Aantal p	oorten: 1	
■ Lengte: s firmware	s 150 m, abs. max. 300 m (afhankelijk van e en kabel)	
1 3,56 MH	łz	
RFID Reikwijdt kaartforr	te: 0 mm tot 15 mm (afhankelijk van het naat)	
Compati EV1/EV2	bele kaarten: Mifare Classic, Mifare DESFire)	
Interface na	ar SimonsVoss-transponders.	
B-veld I Reikwijd dichtbijg	te (ca.): 5 cm tot 60 cm (🗖 Modus elegen bereik, 🔽 Gateway)	
 Reikwijd dichtbijg 	te (ca.): 5 cm tot 100 cm (🗖 Modus elegen bereik, 🔲 Gateway)	
Signalering		
LED 1 RGB		
Geluidssignaal 1 piëzo-zoer		
	ner	

Interfaces	Lezers worden uitsluitend geprogrammeerd via de con- troller. Interfaces van de controller:
	USB
	TCP/IP
	Details: zie controller.

Radio-emissies

15,24 kHz - 72,03 kHz	
Alleen voor arti- kelnummers: SREL3.EXT.*, SREL3.EXT2.*	10 dBµA/m (3 m afstand)
13,560006 MHz - 13,560780 MHz	
Alleen voor arti- kelnummers: SREL3.EXT.*, SREL3.EXT2.*	1,04 dBµA/m (3 m afstand)

14.2.3 LED-lezer

Behuizing				
Materiaal	PA6 kunststof (50% glasvezelversterkt, UV-stabiel)			
Kleur	Donkergrijs, vergelijkbaar met RAL 7021 of			
	👪 Wit, vergelijkbaar met RAL 9016			
Beschermings- klasse	IP20			
	IP65 bij WP-variant			
	Antivandalismeframe beschikbaar			
Leidingstoevoer	Inbouwmontage			
Stroomverzorging				
Schroefklemmen	■ V _{IN} : 9 V _{DC} – 32 V _{DC} (De stroomvoorziening moet beperkt zijn tot 15 W)			
	Verbruik: max. 3 W			
	Ompolingsbeveiliging: ja			
	De max. stroom is afhankelijk van de stroomverzorging en de activiteit van de lezer.			
Gevoed door	Verzorging via doorverbonden stroomverzorging van de controller			
----------------------	--	--	--	--
controller	De max. stroom is afhankelijk van de stroomverzorging en de activiteit van de lezer.			
Omgevingsvoorwaarden				
Temperatuurbe-	■ -25 °C tot +60 °C (in bedrijf)			
reik	■ 0 °C tot +30 °C, (opslag > 1 week)			
Luchtvochtigheid	max. 90% zonder condensatie			
Interfaces	<u></u>			
	Fungeert als interface naar de controller van het SREL3-ADV-systeem.			
RS485	👪 Aantal poorten: 1			
	Lengte: ≤ 150 m, abs. max. 300 m (afhankelijk van firmware en kabel)			
RFID	■ 13,56 MHz			
	Reikwijdte: 0 mm tot 15 mm (afhankelijk van het kaartformaat)			
	 Compatibele kaarten: Mifare Classic, Mifare DESFire EV1/EV2) 			
	Interface naar SimonsVoss-transponders.			
B-veld	Reikwijdte (ca.): 5 cm tot 60 cm (Modus dichtbijgelegen bereik, Gateway)			
	Reikwijdte (ca.): 5 cm tot 100 cm (Modus dichtbijgelegen bereik, Gateway)			
Signalering	<u> </u>			
Visueel	3 LED's (rood, groen, geel)			
Geluidssignaal	1 piëzo-zoemer			
Programmering				
	Lezers worden uitsluitend geprogrammeerd via de con- troller. Interfaces van de controller:			
Interfaces	II USB			
	TCP/IP			
	Details: zie controller.			

Radio-emissies

15,24 kHz - 72,03 kHz		
Alleen voor arti- kelnummers: SREL3.EXT.*, SREL3.EXT2.*	10 dBµA/m (3 m afstand)	
13,560006 MHz - 13,560780 MHz		
Alleen voor arti- kelnummers: SREL3.EXT.*, SREL3.EXT2.*	1,04 dBµA/m (3 m afstand)	

14.2.4 SmartOutput-module

Behuizing				
Materiaal	Behuizing: polycarbonaat, vezelversterkt			
	👪 Kap: polycarbonaat			
	Behuizing: groen, gelijk aan RAL 6021 (bleekgroen)			
Rieur	👪 Kap: transparant			
Beschermings- klasse	IP20			
Gewicht	~ 170 g (zonder verpakking)			
Montage	DIN-rails (37 mm × 15 mm)			
Stroomverzorging				
	■ V _{IN} : 12 V _{DC} (11 V _{DC} – 15 V _{DC})			
Schroefklammen	■ Ruststroom: < 120 mA			
Schroeiklerninen	■ Max. stroom: < 150 mA			
	Beveiliging tegen ompoling: ja			
Omgevingsvoorwaarden				
Temperatuurbe- reik	■ 0 °C tot +60 °C (bedrijf)			
	■ 0 °C tot +70 °C (opslag > 1 week)			
Luchtvochtigheid	max. 90% zonder condensatie			
Interfaces				

	Fungeert als interface naar de controller van het SREL3-ADV-systeem.		
RS485	I Aantal poorten: 1		
	Lengte: ≤ 150 m, abs. max. 300 m (afhankelijk van firmware en bedrading)		
Signalering			
	1 RGB		
	8 groen		
Relais			
Hoeveelheid	8x onafhankelijk van elkaar programmeerbaar		
Schakelmodi	Monoflop		
Schakelduur	Programmeerbaar van 1 s tot 25 s (behalve 0 s als con troller).		
Contacttype	1x NO		
Contactmateri- aal	AgNi+Au		
Gebruikscyclus (elektrisch)	12 V _{DC} / 10 mA: typ. 5 × 10 ⁷ schakelingen		
Gebruikscyclus (mechanisch)	typ. 100 × 10 ⁶ schakelingen		
Stuitertijd	typ. 1 ms, max. 3 ms		
Trillingen	15 G gedurende 11 ms, 6 schokken conform IEC 68-2-27, niet getest voor continu gebruik onder vibra- ties		
Schakelspanning AUX-relais	Max. 24 V		
Schakelstroom	👪 max. 1 A duurstroom		
AUX-relais	max. 2 A Inschakelstroom		
Schakelspanning uitgangen	Max. 24 V		
Schakelstroom uitgangen	Max. 200 mA		
OUT-schakel- stroom	Max.1A		
OUT-schakel- spanning	Max. 24 V		

OUT-schakelver- mogen	Max.1VA
OUT-schakeling bij onderspan- ning	U _v < 10,5 ± 0,5 V komt overeen met

14.2.5 Informatie over de bedrading

Leidingen met gegevensover- dracht	Cat 5 of installatiekabel voor telecominstallaties (bijv. F-YAY 2x2x0,6)		
Leidingen met gegevensover- dracht en stroomverzorging	Cat 5 of installatiekabel voor telecominstallaties (bijv. F-YAY 2x2x0,6)		
Leidingen uitslui- tend voor de stroomverzorging	willekeurige leiding (bijv. F-YAY 2x2x0,6)		

LET OP

Houd rekening met spanningsverlies

Door de koperweerstand ontstaat een spanningsverlies, dat afhankelijk is van de kabeldoorsnede, de stroomtoevoer en de kabellengte. De leidingen voor de spanningsverzorging moeten de juiste maten hebben.

- 1. Controleer dat de kabeldoorsnede van de leidingen voldoende is voor de betreffende spanningsverzorging. Gebruik eventueel een andere geschikte kabel.
- 2. Bundel evt. twee leidingen om de kabeldoorsnede te vergroten.
- 3. Gebruik indien nodig een spanningsbron die zich dichter in de buurt van de SmartOutputmodule bevindt.
- 4. Verhoog, indien mogelijk, de verzorgingsspanning (neem de technische gegevens in acht!).

LET OP

Storingen van het functioneren door andere zendsignalen

Storingsbronnen kunnen een negatief effect hebben op de veilige werking.

- 1. Neem de montage-instructies in acht (zie *Montage [> 103]*).
- 2. Gebruik afgeschermede twisted-pair kabels.
- 3. Sluit de afscherming van de kabel aan één zijde aan op het aardecontact.

*) Onderspanning bij de lezer bij PoE-verzorging

Wordt de controller gevoed via Po, dan brengt een spanningsomvormer de PoE-stroomverzorging omlaag tot 13 V. Deze spanning is beschikbaar voor de voeding van de aangesloten lezers en is mogelijk niet voldoende voor lange kabels of te kleine diameters om een probleemloze werking van de lezer te garanderen. (zie ook*Informatie over de bedrading [> 184]*). Neem de volgende maatregelen:

- 1. gebruik een externe voedingseenheid voor de lezer.
- gebruik een externe voedingseenheid voor de controller, waarvan de spanning duidelijk boven 13 V_{DC} ligt, om de interne stroomverzorging te verhogen. Dit verhoogt ook de voedingsspanning voor de lezer en het spanningsverlies op de leiding heeft geen effect meer.
- 3. Maak de kabel korter.
- 4. Kies een grotere kabeldiameter.

Met behulp van het formulier kunt u een calculatie doen voor koperen kabels. Het formulier houdt rekening met de maximale lengte van de leiding die volgt uit het spanningsverlies. Er worden geen andere storingsinvloeden gecontroleerd, zoals overgangsweerstanden of elektromagnetische velden die de maximale lengte van de kabel beperken tot 300 m. Er wordt gebruikt gemaakt van de volgende formule:

$$L_{Klantkabel (koper)} = \frac{1}{2} * A_{Klantkabel} * \frac{\frac{V_{IN (stroomvoorziening van de klant)} - 8,5V}{0,334A}}{1,75 * 10^{-2} \frac{\Omega * mm^2}{m}}$$

Het resultaat is de maximale lengte van de kabel die volgt uit het spanningsverlies. Deze lengte bestaat uit het traject heen en terug. Om de bedrijfszekerheid te verhogen, moet u een aparte voedingseenheid voor de lezer gebruiken vanaf 75% van de maximaal berekende lengte.

Vul op dit formulier de volgende waarden in:

Waarde	Toelichting	
Voedingsspanning V _{IN} [V]	Spanning van de aangesloten voe- dingseenheid. Lees de waarde af op de voedingseenheid op vraag de be- treffende elektromonteur. Wanneer u de controller voedt via PoE vult u hier 13 V in.	
	Voer het cijfer in zonder eenheid en zet de decimale tekens achter een punt (bijv. 13.5)	

Waarde	Toelichting	
Kabeldiameter A [mm²]	Diameter van de aangelegde of ge- plande kabel. Lees de waarde af op de kabel op vraag de betreffende elektromonteur. Voer het cijfer in zonder eenheid en	
	zet de decimale tekens achter een punt (bijv. 0.5).	

Voedingsspanning:	V
Diameter snoer:	mm²
Lengte snoer (max.)	m

De volgende tabel bevat de maximum lengte voor vaak gebruikte kabeldiameters en voedingsspanningen.

	0,1022 mm² (=AWG27)	0,14 mm²	0,2 mm²	0,6 mm²
PoE	39 m	53 m	76 m	230 m
9 V	4 m	5 m	8 m	25 m
12 V	30 m	41 m	59 m	179 m
24 V	135 m	185 m	265 m	300 m
32 V	205 m	281 m	300 m	300 m

14.3 Afmetingen

14.3.1 Controller

14.3.4 SmartOutput-module

14.4 Boorsjablonen

De schaal van de boorsjablonen is 1:1. U kunt de boorsjablonen afdrukken op DIN A4 en ze dan gebruiken.

OPMERKING

Controleer in uw printerinstellingen dat de afdruk niet op schaal is ingesteld. Gebruik ter controle de lijnen onder de tekeningen.

14.4.1 Controller

LET OP

Voor de montage van de controller zijn maar drie boorgaten nodig.

- 1. Wanneer u de controller met de zijde A naar boven monteert, dan boort u de met "A" gemarkeerde openingen.
- 2. Wanneer u de controller met de zijde B naar boven monteert, dan boort u de met "B" gemarkeerde openingen.

100 mm

LET OP

Het sterretje geeft een optionele boring aan. Deze is voor het bevestigen niet nodig, maar wel bruikbaar als kabeldoorvoer voor de WP-variant.

 Boor deze opening alleen wanneer u deze voor de kabeldoorvoer van de WP-variant wilt gebruiken.

100 mm

14.4.3 Boorsjabloon SREL3-LED/LR-lezer

15. Hulp en verdere informatie

Informatiemateriaal/documenten

Gedetailleerde informatie over het gebruik en de configuratie, alsook overige documentatie vindt u op de homepage:

https://www.simons-voss.com/nl/documenten.html

Software en drivers

Software en stuurprogramma's zijn te vinden op de website:

https://www.simons-voss.com/nl/support/software-downloads.html

Conformiteitsverklaringen

Conformiteitsverklaringen en andere certificaten vindt u op de homepage:

https://www.simons-voss.com/nl/certificaten.html

Informatie over verwijdering

- Voer het apparaat (SREL3.CTR.*, SREL3.EXT.*, SREL3.EXT2.*) niet af als huishoudelijk afval, maar overeenkomstig de Europese Richtlijn 2012/19/EU bij een gemeentelijke inzamelpunt voor speciaal elektrotechnisch afval.
- Zorg voor recycling van defecte of gebruikte batterijen volgens de Europese Richtlijn 2006/66/EG.
- Neem de plaatselijke bepalingen in acht voor de gescheiden afvoer van batterijen.
- Voer de verpakking af naar een instantie voor milieuvriendelijke recycling.

Technische Support

Onze technische ondersteuning zal u graag helpen (vaste lijn, kosten afhankelijk van provider):

+49 (0) 89 / 99 228 333

E-mail

Schrijft u ons liever een e-mail?

support-simonsvoss@allegion.com

FAQ

Informatie en hulp vindt u op de homepage in het menupunt FAQ:

https://faq.simons-voss.com/otrs/public.pl

Adres

SimonsVoss Technologies GmbH Feringastr. 4 85774 Unterföhring Duitsland

Typisch SimonsVoss

SimonsVoss, de pionier op het gebied van radiografisch geregelde, draadloze sluittechniek biedt systeemoplossingen met een breed productgamma voor de vakgebieden SOHO, kleine en grote bedrijven en publieke instellingen. SimonsVoss-sluitsystemen combineren intelligente funtionaliteit, hoge kwaliteit en bekroond design Made in Germany.

Als innovatieve systeemaanbieder hecht SimonsVoss grote waarde aan schaalbare systemen, hoge beveiliging, betrouwbare componenten, sterke software en eenvoudige bediening. Hierdoor wordt SimonsVoss

beschouwd als een technologisch marktleider op het gebied van digitale sluitsystemen.

Moed voor vernieuwing, duurzaam denken en handelen, evenals een hoge waardering voor medewerkers en partners zijn het fundament van onze economische successen.

SimonsVoss is een onderneming van de ALLEGION Group – een internationaal opererend netwerk op het gebied van beveiliging. Allegion is in ongeveer 130 landen over de hele wereld actief (www.allegion.com).

Made in Germany

SimonsVoss neemt het predikaat "Made in Germany" bijzonder serieus. Alle producten worden uitsluitend ontwikkeld en geproduceerd in Duitsland.

$\ensuremath{\mathbb{C}}$ 2025, SimonsVoss Technologies GmbH, Unterföhring

Alle rechten voorbehouden. Teksten, illustraties en grafische elementen vallen onder het auteursrecht.

De inhoud van dit document mag niet gekopieerd, verspreid of gewijzigd worden. Meer informatie over dit product vindt u op de website van SimonsVoss. Technische wijzigingen voorbehouden.

SimonsVoss en MobileKey zijn geregistreerde merken van SimonsVoss Technologies GmbH.

